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Content. We include additional findings in this supplementary doc-
ument. Initially, we conduct an in-depth study to identify the op-
timal weight combination for our model’s reward function (Sec-
tion 4.4.1)). Then we provide two additional evaluation studies, one
involving dynamic environments with obstacles (Section 5.6), and
another focusing on wcomp distribution reproduction performance
(Section 5.7).

4.4. Reward Function Design

4.4.1 Evaluating Imitation Performance

Weight Combination Analysis. We perform a study to find the
combination of {wu,wp,wo} that yields the best results. We train
four models, each with different combinations of weights, present-
ing the training curves in Figure 1. To ensure consistency, we run
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Figure 1: Training curves for different weight combinations.

five simulations per dataset (Ped-1 and UC-3), using each trained
model, and calculate the distributions of wcomp. Then we com-
pute the cross-entropy [Sha48] between the ground truth and sim-
ulated distributions to assess which model most closely resemble
the characteristics of the real-world data; lower values indicate bet-
ter alignment between the two distributions. The results presented
in Figure 2 indicate that the model trained with the combination
{wu = .25,wp = .5,wo = .25} achieves the best performance on
both datasets. This combination places a greater emphasis on prox-
imity, compelling agents to more precisely align their positions
with those of their assigned real agents. Thus, we select this weight
combination for our model.
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Figure 2: Reward Parameters Analysis. We show median and mean
with X and diamond symbols respectively.

5.6. Adaptability in Dynamically Changing Environment

We test our model performance on synthetic dynamic scenarios
utilizing the Infinite environment, enabling constant agent flow,
and dynamically spawn obstacles using pseudo-random placement.
Specifically, every 10 seconds we use the current agents’ positions
and apply Delaunay triangulation [Del34] to discretize the environ-
ment. We then identify triangles with an area above a set threshold,
randomly select 15-25, and place one randomly sized and oriented
obstacle in each, ensuring obstacles do not disrupt agents’ state.

The setup forces agents to face scenarios not encountered during
training, and is applied to assess their ability to perform the in-

Figure 3: Synthetic Dynamically Changing Environment. We uti-
lize the Infinite environment, dynamically placing random obsta-
cles at regular intervals. Rendered results are presented by sam-
pling wcomp values from Ped-1 (top) and UC-3 (bottom) datasets.
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Figure 4: We present the distribution of calculated complexity scores for all real-world training and unseen datasets (top), accompanied by
the distributions calculated over their generated simulations using our model (bottom).

Figure 5: We present trajectories, color-coded based on their wcomp score, for all real-world training and unseen dataset (top), accompanied
by sample color-coded trajectories from their generated simulations using our model (bottom).

dicated behaviors in novel dynamic environments. We select two
datasets, Ped-1 and UC-3, sample wcomp values from their dis-
tributions, and run individual simulation. In Figure 3 we present
rendered results, showing the environment’s state at four different
timesteps over time. In the upper section (Ped-1), we show that
most agents are moving in pairs or groups, mimicking pedestri-
ans on a shopping street, with a few agents remaining stationary.
On the other hand, for the UC-3, a greater proportion of agents are
engaged in stationary group interactions, similar to students gather-
ing on a university campus, while others are seen moving towards
specific destinations, like their classes. Finally, we argue that de-
spite the changing structure of the environment over time, agents
are still able to perform their designated behaviors; animated re-
sults are presented in the supplementary video material.

5.7. Behavior Complexity Reproduction

We apply an additional study where we evaluate if our model can
reproduce the input data distribution wcomp. We run individual sim-
ulations using the characteristics of each dataset, both training and
unseen. Then, we characterize the simulation trajectories and com-
pute their wcomp distributions. We present the results in Figure 4,
while also Figure 5 shows the generated trajectories, colored by
their corresponding complexity value. The results demonstrate that
our model effectively replicates the complexity distributions, sug-

gesting that the agents accurately exhibit the behaviors presented in
each dataset. In addition, the behaviors in each simulation are sig-
nificantly influenced by the varying input data, as evidenced by the
clear structural distribution differences observed between various
crowd datasets. Specifically, in UC, we show a better coverage of
the whole complexity spectrum, as these real-world datasets con-
tain a variety of behaviors, both simple and complex, due to their
nature. Individuals on a university campus may walk towards their
classes alone or with their classmates, engage in stationary con-
versations, wander around, and more. However, the complexity of
behaviors in the Pedestrians datasets falls mainly within the range
of (.4, .7). According to our behavior analysis, there is a high fre-
quency of goal-seeking behavior, with people walking in pairs or
groups. This behavior is typical and expected on a small shopping
street near a sidewalk. Finally, in the Flock dataset, since the num-
ber of tracked trajectories is low (24), the distribution may not be
as informative as the other datasets. Nonetheless, our model still
reproduces wcomp values within the ground truth range.
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