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Fig. 1. We use a complexity metric to characterize real-world crowd data and train virtual agents to exhibit controllable diverse crowd behaviors from
data-driven guidance to independent decision-making. Our model populates new environments with plausible simulations.

The level of realism in virtual crowds is strongly affected by the presence
of diverse crowd behaviors. In real life, we can observe various scenarios,
ranging from pedestrians moving on a shopping street, people talking in
static groups, or wandering around in a public park. Most of the existing
systems optimize for specific behaviors such as goal-seeking and collision
avoidance, neglecting to consider other complex behaviors that are usually
challenging to capture or define. Departing from the conventional use of
Supervised Learning, which requires vast amounts of labeled data and of-
ten lacks controllability, we introduce Crowds using Example-driven Deep
Reinforcement Learning (CEDRL), a framework that simultaneously lever-
ages multiple crowd datasets to model a broad spectrum of human behaviors.
This approach enables agents to adaptively learn and exhibit diverse behav-
iors, enhancing their ability to generalize decisions across unseen states.
The model can be applied to populate novel virtual environments while
providing real-time controllability over the agents’ behaviors. We achieve
this through the design of a reward function aligned with real-world obser-
vations and by employing curriculum learning that gradually diminishes the
agents’ observation space. A complexity characterization metric defines
each agent’s high-level crowd behavior, linking it to the agent’s state and
serving as an input to the policy network. Additionally, a parametric reward
function, influenced by the type of crowd task, facilitates the learning of a
diverse and abstract behavior “skill” set. We evaluate our model on both
training and unseen real-world data, comparing against other simulators,
showing its ability to generalize across scenarios and accurately reflect the
observed complexity of behaviors. We also examine our system’s control-
lability by adjusting the complexity weight, discovering that higher values
lead to more complex behaviors such as wandering, static interactions, and
group dynamics like joining or leaving. Finally, we demonstrate our model’s
capabilities in novel synthetic scenarios.
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1 INTRODUCTION
Simulating real human crowd behavior is a challenging task due
to the diverse and intricate nature of human interactions. Human
navigation is not just about moving from one point to another; it
includes a wide spectrum of additional and complex actions. For in-
stance, in urban settings, individuals often navigate in small groups
towards specific destinations or pause outside storefronts. In con-
trast, in dynamic environments like outdoor markets or university
campuses, people are more likely to wander and engage in conver-
sations within static groups. Furthermore, real-world observations
reveal that each individual exhibits unique behaviors, contribut-
ing to a rich variety of actions. Accurately simulating this array of
distinct behaviors proves to be a challenging task.
Although there exist various techniques for simulating crowds,

many of them require intricate user or designer adjustments to
achieve the desired visual outcome. Addressing this challenge in-
volves exploringmethods, such as implicitly learning behaviors [Char-
alambous et al. 2023] or parameters [Pettré et al. 2009; Wolinski
et al. 2014] from reference data, representing the desired crowd
behaviors. Traditionally, Supervised Learning (SL) has been the
dominant approach to modeling agent behavior, often incorporat-
ing real-world data to improve navigation realism [Charalambous
and Chrysanthou 2014; Lerner et al. 2007]. While these methods
have advanced the field, they are often hard to implement, face
limitations related to the quantity and quality of input data, struggle
with generalizability, and lack controllability, which is an impor-
tant feature in crowd simulators [Lemonari et al. 2022]. Recent
works have introduced Deep Reinforcement Learning (RL) as a dy-
namic and effective alternative [Hu et al. 2023; Long et al. 2017;
Panayiotou et al. 2022]. RL adopts a trial-and-error learning method-
ology, optimizing agent behaviors through scalar reward signals
generated during the simulation. These rewards are based on the
actions executed by agents after receiving a list of observations,
which partially describe the current state of the environment. How-
ever, the challenge lies in defining and balancing reward signals to
accurately capture the diverse spectrum of human crowd behaviors,
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which is extremely difficult due to the complexity and variability.
For example, Panayiotou et al. [Panayiotou et al. 2022] handles this
by concurrently learning a distribution of reward functions, while
Charalambous et al. [Charalambous et al. 2023] defines a reward
function using novelty detection with respect to some reference
crowd data.

In this work, we introduce CEDRL, an innovativemethodology for
learning human crowd behaviors. Our approach distinguishes itself
from most existing RL-based methods by combining imitation learn-
ing features, deep RL, and real-world data, enabling virtual agents to
gain comprehensive crowd behavior “knowledge”. Unlike traditional
imitation learning techniques such as Behavioral Cloning [Bi et al.
2020], where agents directly mimic expert demonstrations and strug-
gle with adapting to unfamiliar states, our model develops a more
abstract set of behavioral decisions that generalize better across un-
seen states. To achieve this, we design a reward function to align the
agents’ behaviors with real-world observations and incorporate a
curriculum learning mechanism. Initially, the agents learn to imitate
diverse crowd behaviors with partial data guidance. Gradually, we
exclude information about movement states, presented in the refer-
ence data, from the agents’ observation space, and use a parametric
reward function to evaluate behavior over complexity-characterized
real-world samples. This transition allows agents to switch to pure
RL through individual decision-making. The acquired knowledge
can then be applied and controlled in real-time to populate novel en-
vironments, enabling agents to exhibit a diverse spectrum of crowd
behaviors without explicitly defining task-specific reward terms. For
instance, manually fine-tuning reward parameters and balancing
conflicting behaviors, such as wandering or engaging in stationary
conversations, becomes increasingly time consuming and complex
as the range of behaviors increases. Although recent methods like
Guided-RL [Charalambous et al. 2023] advance beyond the man-
ual definition of reward functions by inferring them from expert
behavior, CEDRL employs a simple RL function to match assigned
behaviors to those of experts, eliminating the need to manually de-
fine behavior-dependent rewards and address conflicting objectives
in diverse datasets. This approach offers controllability and reduces
the implementation complexity, providing a promising avenue for
training virtual agents to exhibit generalized and adaptive behaviors
in complex environments.
In summary, our primary contributions include a novel crowd

simulation training framework that blends imitation learning with
deep RL, utilizing a parameterized reward function to enable adap-
tive, complexity-sensitive agent learning. We also introduce a mul-
tifaceted trajectory characterization metric that integrates various
aspects of movement and crowd dynamics to define diverse individ-
ual behaviors. Additionally, our model can simultaneously leverage
multiple datasets during the learning phase, allowing virtual agents
to learn a wide range of behaviors observed in real human data.
We conduct a series of experiments, both quantitative and qual-

itative, to assess our model’s performance on both training and
unseen data. The results reveal that our method excels in providing
flexibility, adaptability, and generalizability, as it is able not only to
reproduce the behaviors observed in each dataset but also to success-
fully replicate them in novel synthetic and dynamic environments.
We compare our work with two baseline models [Lee et al. 2018;

Panayiotou et al. 2022] that implement a similar state representa-
tion, demonstrating that it performs better and more accurately
matches the tracked statistics. Additionally, we further evaluate our
model by comparing against the leading state-of-the-art method
(GREIL-Crowds [Charalambous et al. 2023]). Finally, we execute a
sensitivity analysis for the characterization metric, to assess how dif-
ferent values alter the agents’ behavior, showing that varied values
consistently influence the overall behavior of the agents.

2 RELATED WORK
Over the years, extensive research has been conducted in simulating
crowds and understanding their behaviors, leading to the develop-
ment of various techniques covering a wide array of scenarios and
goals [van Toll and Pettré 2021]. Consequently, two primary ap-
proaches have emerged: microscopic, which concentrate on local
navigation, interactions, and behavioral diversity, and macroscopic,
which regards the crowd as a unified continuous entity, with lesser
emphasis on diversity. More recently, the popularity of data-driven
and RL methods has grown due to their promising results, and thus,
our literature review focuses more on these methods, as they are
more closely aligned with the core concepts of our research.

2.1 Data-Driven Crowds
In the context of microscopic simulation, data-driven and learning-
based approaches have been employed to improve the manual craft-
ing of rules or functions, as these approaches excel at capturing
detailed behaviors. Early approaches involve searching databases
with trajectories from crowd videos stored alongside representations
of local states and actions [Kwon et al. 2008; Lai et al. 2005; Lee et al.
2007; Lerner et al. 2007; Zhao et al. 2017]. Thus, during run-time,
agents compare their current states with those stored in the database
andmodify their actions accordingly. In thatmanner, the PAGCrowd
proposed by Charalambous and Chrysanthou [Charalambous and
Chrysanthou 2014] utilizes interconnected clustered databases en-
coded as graphs, enhancing querying efficiency. Similarly, Zhao et
al. [Zhao et al. 2013] trained an artificial neural network to select
suitable clusters based on input states, while Boatright et al. [Boa-
tright et al. 2015] used context descriptors for grouping and learning
a behavioral policy; this enables more efficient querying as agents ac-
cess the trained model instead of a database. In addition, Ju et al. [Ju
et al. 2010] presented a method blending existing crowd data to
generate new motions applicable to various agents. However, these
methods heavily rely on the quantity and quality of recorded data,
influencing computational cost and complexity, while controllability
is minimal. Generalizability is another challenge, as encountering
new and unseen states often leads to accumulation of errors.
An alternative method for utilizing reference data was selected

by [Guy et al. 2011; Paris et al. 2007; Pettré et al. 2009; van Basten
et al. 2009] which leverages this data to tune crowd simulators
parameters, mainly focusing on collision avoidance. Recent efforts
incorporate real-world data with Deep Learning (DL) for crowd
navigation. Alahi et al. [Alahi et al. 2016] employed a Recurrent
Neural Network to predict agents’ future trajectories, while Gupta et
al. [Gupta et al. 2018] and Amirian et al. [Amirian et al. 2019a,b] used
Generative Adversarial Networks to generate diverse trajectories.
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Despite the potential of DL techniques, learned models rely on
the diversity and quantity of the reference data. A study by Qiao et
al. [Qiao et al. 2019] explored how training data and methods impact
the ability of imitation models to replicate expert agent movements
when applied to novel scenarios.

2.2 Reinforcement Learning Crowds
RL-based methods have proven to be effective for learning optimal
solutions in sequential decision-making problems [Sutton and Barto
2018]. Recently, Kwiatkowski et al. [Kwiatkowski et al. 2022, 2023]
explored the various deep RL methods for character control, while
also studied the impact of different RL design decisions in crowd
simulations, revealing that certain choices significantly enhance
efficiency and performance. The potential of RL in crowd simulation
was initially demonstrated by Treuille et al. [Treuille et al. 2007],
who trained controllers for real-time character animation and colli-
sion avoidance. RL approaches have thereafter been widely used to
train policies in crowd simulation [Godoy et al. 2015; Lee et al. 2018;
Martinez-Gil et al. 2011]. For instance, Chen et al. [Chen et al. 2016]
trained a model for robot navigation, selecting optimal velocities
predicted by ORCA [Van den Berg et al. 2011]. Xu and Karamouzas
[Xu and Karamouzas 2021] learned human-like collision avoidance
behavior using knowledge distillation and RL to construct the re-
ward function, based on human trajectory demonstrations. Some
works achieved notable results by defining simple reward functions
focusing on goal-seeking and collision avoidance [Casadiego and
Pelechano 2015; Lee et al. 2018; Long et al. 2017; Martinez-Gil et al.
2017; Sun et al. 2019]. Haworth et al. [Haworth et al. 2020] combined
multi-agent and hierarchical RL achieving emergent behaviors for
physically-based character simulations. However, crafting these
manual reward signals is complex, covering a wide spectrum of real
behaviors is challenging, and policies remain constant throughout
the simulation without enabling diverse behaviors among agents
and the environment.

To address this, various works introduced parameterized reward
functions affecting the agents’ behavior during simulation. For in-
stance, Lee et al. [Lee et al. 2021] presented an algorithm learning
a parameterized family of motor skills from a single motion clip,
Won and Lee [Won and Lee 2019] trained parametric controllers
for body shape variation, while Hu et al. [Hu et al. 2023] proposed
a multi-agent RL approach learning a parametric predictive colli-
sion avoidance and steering policy. More recently, Panayiotou et
al. [Panayiotou et al. 2022] developed an RL-based framework with
a single parameterized policy enabling a mixture of core behaviors
(goal-seeking, collision avoidance, grouping, and interaction with
environmental elements). However, even though it can generate
heterogeneous agent behaviors efficiently, balancing the weights
of the reward function requires manual work, while the lack of
real-world data impact its efficiency and simulation’s plausibility.
Finally, Charalambous et al. [Charalambous et al. 2023], proposed
GREIL-Crowds which utilize Deep Q-Learning to learn a model for
pedestrian behaviors guided by reference crowd data, effectively
encapsulating behaviors like goal-seeking, group formation, and
wandering, with generalizability to unseen scenarios. Even though

the latter work has similar properties to our work, it lacks behav-
ioral control through the policy network, ignores the environment’s
structure, does not have a continues action space, and is trained
once per dataset.

3 FRAMEWORK
This section describes the high-level pipeline of our framework aim-
ing on learning controllable crowd behaviors that can be distributed
to populate novel virtual environments. We train an RL agent-based
model over a variety of behaviors observed in different real-world
datasets simultaneously, able to produce realistic-looking crowd
behaviors. The central concept of our work involves integrating
pure RL with imitation learning. This fusion effectively eliminates
the requirement for manually crafted reward functions, offering a
significant advantage by mitigating the constraints associated with
direct imitation learning discussed in Section 2. By combining these
methodologies, we harness the strengths of both approaches, allow-
ing for more robust and adaptable agent behaviors, while offering
behavioral control during run-time.

The proposed system consists of three phases: Crowd data charac-
terization, Learning and Simulation (see Figure 1). First, we acquire
real-world trajectories extracted from real videos and we “char-
acterize” them to be used in the next phase (Section 4.1). Then,
during training, we build an exact copy of the environment from
each dataset and spawn real agents and RL-agents concurrently. We
aim on training RL-agents to learn how to behave (under specific
conditions) based on the behaviors acquired by observing the move-
ments of real agents. We employ a curriculum learning approach
that gradually reduces the size of the observation space, and we
incorporate a complexity metric both as observation and reward
signal (Section 4.2). Finally, during inference, we can utilize our
learned policy to populate novel virtual environments with agents
exhibiting varied, plausible, and controllable behaviors.
Designed as a decentralized agent-based crowd simulator, this

framework allows each agent to function independently. RL-agents
make decisions based on acquired observations within a designated
radius, capturing only partial information of the environment’s
current state. We model our agents as cylinders, navigating on a
2D plane, with their movements directed by assigning a preferred
velocity at each simulation step.

4 LEARNING CONTROLLABLE CROWD BEHAVIORS

4.1 Crowd Data Characterization
We characterize real-world crowd data by calculating a Complexity
Score (𝑤𝑐𝑜𝑚𝑝 ) for each trajectory. This score defines the complexity
of behaviors observed in a specific trajectory and is a multifaceted
measure that combines various aspects of movement and crowd
dynamics. This particular step operates independently from the
agents’ training phase and is not a prerequisite for learning crowd
behaviors. Nevertheless, the primary objective of introducing this
characterization metric is to facilitate intuitive and real-time con-
trollability over the agents’ behaviors; a critical component that is
frequently neglected by previous works.
The complexity score is a combination of three metrics. First,

we consider Movement Diversity Score (MDS), aiming on evaluating
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Fig. 2. Training datasets along with their 𝑤𝑐𝑜𝑚𝑝 distributions. We use four datasets UC (1,3) and Pedestrians (1,2) [Lerner et al. 2007] (left). Examples of
real-world trajectories, using different values of 𝑤𝑐𝑜𝑚𝑝 . We show the referenced trajectory (color-coded by its complexity value) along with five additional
trajectories for the current time-window (grey); larger trajectory points indicate lower speed. (right)

the diversity of local movement. A higher overall score indicates
more frequent changes in both speed and direction, revealing more
diverse, or “complex” local navigation. We divide each trajectory
𝑇𝑖 = {p1i , . . . , p

n
i }, containing n points, in m segments {𝑠1

𝑖
, . . . , 𝑠𝑚

𝑖
} us-

ing a window of 4𝑠𝑒𝑐 , and get the average speed𝑢 𝑗
𝑖
and displacement

vector v̂ji for each; we chose this window size after experimenting
with various durations, as it allows sufficient time for an individual
to change direction or speed. We additionally calculate the change
in direction between consecutive segment vectors, quantified as
the dot product: 𝑑𝑖𝑟 𝑗

𝑖
= v̂ji · v̂

j+1
i . An illustration of this process

in shown in Figure 3. The standard deviations of speeds 𝝈𝑢𝑖 and
direction changes 𝝈𝑑𝑖𝑟𝑖 are calculated for every trajectory. These
values are normalized against the maximum observed speed and
direction standard deviations in the current dataset. We note that
we sum the two standard deviations and then clamp the result in
the range [0,1]. This approach was adopted after observing that
averaging the standard deviations often leads to scenarios where a
significantly low value in one of the two statistics highly impacts
the overall score. Thus, for every 𝑇𝑖 , we compute𝑀𝐷𝑆𝑖 as:

𝑀𝐷𝑆𝑖 = 𝝈𝑢𝑖 + 𝝈𝑑𝑖𝑟𝑖 . (1)

Second, we include a Path Deviation Score (PDS), as the paths that
deviate from the direct route to the goal position typically indicate
a higher level of diverse behaviors. In real life, people generally
tend to walk directly towards their destination, unless they engage
in intermediate tasks that may cause them to deviate from their
current path. We calculate 𝑃𝐷𝑆𝑖 , for each 𝑇𝑖 , using the Equation 2,
setting the balance term 𝛼 = 2.

𝑃𝐷𝑆𝑖 = 1 − 1

1 + 𝛼

(∑𝑛−1
𝑡=1 ∥pti − pt+1i ∥2 − ∥p1i − pni ∥2

) . (2)

Finally, we incorporate a Grouping Dynamics Score (GDS), mea-
suring the tendency of a person to perform any kind of behavior,
shared with other people. We assume that when people engage in
specific behaviors, while interacting with others at the same time,
this should lead to an increase in the overall complexity score. Such
situations typically require cooperation and coordination, which add

layers of complexity. For every 𝑇𝑖 , we calculate 𝐺𝐷𝑆𝑖 by following
the steps outlined below. First, we examine every other trajectory𝑇𝑗
that meets explicit criteria, both in terms of space and time. Specif-
ically, the distance between the first position of 𝑇𝑖 and 𝑇𝑗 (spawn
points) must be less than 2 meters and the difference between their
initial timestep (spawn timesteps) less than 2 seconds. Then, for
each qualifying trajectory pair (𝑇𝑖 ,𝑇𝑗 ), where 𝑖 ≠ 𝑗 , we compute the
distances between corresponding points at each timestep, denoted
as 𝐷𝑖, 𝑗 = {𝑑1

𝑖, 𝑗
, . . . , 𝑑𝑛

𝑖,𝑗
}. Subsequently, for each pair, we calculate

the proportion, denoted by 𝑄𝑖, 𝑗 ∈ [0, 1], of the trajectory length
where each element in 𝐷𝑖, 𝑗 is less than a social distance thresh-
old 𝑑social = 3.6𝑚; this value is defined as the “social distance” for
interactions by Hall [Hall 1963]. We calculate 𝐺𝐷𝑆𝑖 as:

𝐺𝐷𝑆𝑖 =
1
𝑛

𝑛∑︁
𝑗=1

(
1 − 𝑑

𝑖, 𝑗

close/𝑑social
)
×𝑄i,j, (3)

where, 𝑑𝑖, 𝑗close is the average of all values in 𝐷𝑖, 𝑗 . We characterize the
behavior of each𝑇𝑖 and calculate its overall complexity score𝑤𝑖

𝑐𝑜𝑚𝑝

by combining the three metrics presented above using:

𝑤𝑖
𝑐𝑜𝑚𝑝 = .25 × (𝑀𝐷𝑆𝑖 + 𝑃𝐷𝑆𝑖 ) + .5 ×𝐺𝐷𝑆𝑖 . (4)

Fig. 3. Illustration of two trajectories 𝑇𝑖 and 𝑇𝑗 with selected notations
introduced in Section 4.1. Every 𝑇𝑖 = {p1i , . . . , p

n
i } is divided into𝑚 seg-

ments {𝑠1
𝑖
, . . . , 𝑠𝑚

𝑖
}, and a displacement vector vji is computed for each. The

term 𝑑𝑡
𝑖,𝑗

defines the distance between corresponding points (pti , p
t
j ), at each

timestep 𝑡 .
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We decide to equally combine𝑀𝐷𝑆𝑖 and 𝑃𝐷𝑆𝑖 as they both capture
the individual behavior of a person, while 𝐺𝐷𝑆𝑖 defines the group-
ing dynamics in which individual behavior occurs. We normalize
each trajectory complexity score using the minimum and maximum
scores across all datasets to ensure consistency.
On the right part of Figure 2 we present sample trajectories,

extracted from real-world data, for different values of 𝑤𝑐𝑜𝑚𝑝 . We
observe that at lower values (0,.3), there is a dominant goal-seeking
behavior where individuals follow the direct path towards their
goal. For medium values (.4,.7), people may start walking in pairs,
slightly deviate from their path, or perform sudden stops. Finally,
at higher values (.8,1], we show that people exhibit a combination
of actions leading to more complex crowd behaviors. An in-depth
crowd behavior analysis is presented in Section 4.1.1.

To train our network, we select four available crowd datasets (see
left part of Figure 2), a set of two datasets from a University Campus
(1,3), and another set from a Commercial Street - Pedestrians (1,2); for
simplicity we will refer to them as UC-1,3 and Ped-1,2 respectively.
These datasets contain annotated trajectories of people captured at
25𝐻𝑧. The total duration of our training data is 19.5 minutes, with a
total of 1194 individual tracked trajectories. We observe that these
datasets contain both simple behaviors, like goal-seeking, and more
complex behaviors, including wandering around, stationary and
moving groups, interactions with the environment, sudden stops,
walking and talking and more.

The characterized training data and source code can be accessed
at https://github.com/veupnea/CEDRL.

4.1.1 Crowd Behavior Analysis. We perform a detailed analysis
to examine the efficiency of our characterization process and the
impact of different values of𝑤𝑐𝑜𝑚𝑝 on the agents’ behaviors. A list
of frequent crowd behaviors, that can be observed in our training
data, has been considered. We divide the selected behaviors in three
types, (a) local movement behaviors, (b) whole path behaviors, and
(c) grouping dynamics.

First, we consider Stop and Accelerate, where we split each trajec-
tory in segments having a 4𝑠𝑒𝑐 duration, and calculate the average
speed for each. We determine whether a person is standing still, has
started moving, or has suddenly stopped, by setting a speed thresh-
old of .1𝑚/𝑠 and examining the state of the current and previous seg-
ment. Second, we identify if a person performs direct Goal-Seeking
behavior orWander around, by examining the ground truth path 𝑃𝑔 .
For each dataset, we use the environment map to construct a grid
and apply a path-finding algorithm to determine the most efficient
path, 𝑃𝑒 , between the spawn and goal positions of each trajectory.
We then compute the deviation ratio, 𝑅𝑑 = 𝑃𝑒/𝑃𝑔 where 𝑃𝑔 is the
actual path taken. Based on the dynamics in the training data, we
set the threshold 𝑅𝑑 ≥ .7 to classify a trajectory as goal-seeking;
otherwise, it is considered wandering. Finally, we evaluate grouping
dynamics for each individual trajectory by focusing on how many
other individuals the current person is interacting with. We define
an interaction between two persons by considering their spatial
and temporal similarities following the same procedure as in the
calculation of 𝐺𝐷𝑆 in Section 4.1.
In Figure 4 we present the fraction of each behavior across dif-

ferent𝑤𝑐𝑜𝑚𝑝 intervals, by merging the data from all four training
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Fig. 4. Behavior occurrence analysis for various 𝑤𝑐𝑜𝑚𝑝 values across train-
ing datasets. We analyse (a) local movement behaviors, (b) whole path
behaviors and (c) grouping dynamics.

datasets. Then, we normalize the frequency of each interval using
the total entries and show the comparative results. Regarding the
local movement behaviors (a), we observe that, for higher values,
humans stop and accelerate with a higher frequency, leading to a
logical increase in 𝑤𝑐𝑜𝑚𝑝 , as the overall speed deviation is larger.
We note that stop occurrence is higher than accelerate as, especially
in University Campus datasets, we notice a large number of station-
ary interactions between individuals, leading to a convergence in
static behaviors. Second, in terms of the entire path behaviors (b),
goal-seeking, which is a simple and fundamental crowd behavior,
has a high occurrence in low and medium complexity values. Wan-
der behavior, which indicates the execution of intermediate tasks
by people, appears in higher𝑤𝑐𝑜𝑚𝑝 values. Third, overall grouping
and interactions have high occurrence in medium and high com-
plexity (c). We show that groups of two persons (pairs) have the
higher frequency in our training data. To conclude this analysis, it
is evident that an increase in the complexity score is associated with
a corresponding increase in the complexity of crowd behavior.

4.2 Training Strategy
The first step of our learning pipeline is the characterization of
the training data as described in Section 4.1. Then, we build the
environment for each training dataset as shown on the left side
of Figure 6. The training process starts by placing real agents in
the scene based on the ground-truth timesteps and spawn/goal
positions as appear in data. Each time a new real agent is spawned
in the environment, we initialize an RL-agent at the same position
applying random noise, both on position and look direction; at this

https://github.com/veupnea/CEDRL
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Fig. 5. During training we gradually decrease 𝑤𝑓 𝑎𝑑𝑒 , controlling the per-
centage of the trajectory’s duration that the RL-agent receives observations
about the state of its assigned real agent.

point a new per-agent episode begins. Each episode ends when the
real or RL-agent arrives at its assigned goal position or a collision
with an obstacle occurs (refer to Table 2). We note that to increase
the training efficiency, we spawn multiple RL-agents in the same
environment (one for each real agent) concurrently, however, each
RL-agent is not aware of the existence of the other RL-agents, nor
do they affect its navigation. Each agent is decentralized and runs
on its own episode, however still all agents train the same policy.
We emphasize that our policy is trained simultaneously across all
training datasets, instead of creating separate policies for each one,
something that results in better scalability.

Our main objective is to train agents to mimic real behaviors and
replicate them on novel environments. However, the end goal is to
achieve this without any prior knowledge of the real agent’s state,
neither explicit guidance. Agents should solely rely on their own
experience and the partial observations receiving for the current
environmental state. Thus, we apply a curriculum learning approach
during training, utilizing the globalObservation Fading Factor 𝑤 𝑓 𝑎𝑑𝑒

that affects all agents in the scene. The training phase starts by
providing RL-agent with information about the state of its assigned
real agent for the 𝑤 𝑓 𝑎𝑑𝑒 = 75% of the trajectory’s duration. An
illustration of this concept is presented by Figure 5. We found that
initiating training at that specific percentage consistently yields
the best results, as agents get familiar from the beginning that at
some point part of the observation space will be eliminated. Then,
we gradually decrease 𝑤 𝑓 𝑎𝑑𝑒 , until reaching 0, which completely
removes the observations related to real agent’s state (Section 4.4).
This process gradually enhances the agents’ adaptability and further
develops their behavior “knowledge”. Finally, during the last training
steps, our agents are able to navigate in the scene without guidance,
exhibiting behaviors defined by different𝑤𝑐𝑜𝑚𝑝 values.

4.3 Action Space
Our model generates actions that control the local movement of
each agent. Thus, for every individual agent we set a preferred
velocity vtp for each simulation step 𝑡 by combining two continuous
actions, a movement speed multiplier𝑚𝑡

𝑑
∈ [−.5, 1] and a turning

angle multiplier𝑚𝑡
𝑎 ∈ [−1, 1]; we promote natural navigation by

setting a higher forward movement probability. Then, for every
simulation step 𝑡 , the movement speed of an agent is calculated by
𝑚𝑡
𝑑
×2.25𝑚/𝑠 (maximum speed observed in the real-world data) and

the turn angle by𝑚𝑡
𝑎 × 90◦/𝑠 . Finally, we pass vtp to a Reciprocal

Velocity Obstacles (RVO) [Van den Berg et al. 2008] simulator, to
produce a collision-free future velocity, directing our agents’ local
movement. We note that our model makes a decision every𝑇𝑑 = .2𝑠
and selects a suitable action, which repeats for every in-between
simulation step 𝑇 = .04𝑠 .

4.4 Observation Space
Each individual agent makes decisions by collecting a number of
observations that partially describe the environment’s current state.
We utilize both scalar and visual observations. The observations of
our agents are divided into two sets: (a) information about agent’s
current state and (b) information about the current state of their
assigned real agent that are trying to imitate. We note that the local
coordinate system of each agent is aligned with its look direction.

(a) RL-agent state. At each decision step 𝑡 , we collect the Local
velocity vt relative to the look direction and the Relative Goal Position
described by the tuple (𝜌𝑡 , 𝜃𝑡 ), where 𝜌𝑡 ∈ [0, 1] is the distance
to the goal normalized by a maximum environment distance, and
𝜃𝑡 ∈ [0, 1] is the normalized angle between the agent’s look
direction and the vector towards the goal position. Likewise, we
include the𝑤𝑐𝑜𝑚𝑝 value as observation, which characterize the type
of the behavior that the agent is currently facing. In addition to the
scalar observations above, we utilize two Distance Sensors, detecting
real agents and obstacles, by casting 2 × 15 rays uniformly in front
of the agent, on an angle 240◦ and distance 5𝑚. The purpose of
this sensor is to simulate the human visual perception, as close as
possible. Additionally, to capture surrounding contexts and hidden
states that humans often perceive through other senses, such as
hearing, we employ two Visual Sensors. Each sensor is defined as
a 20 × 20 grid, detecting real agents and obstacles respectively,
encoding the top-down view around an agent (3𝑚 distance) as a
PNG image. We note that the distance sensors and the visual sensors
detect all other real agents in the environment, excluding the real
agent assigned to the RL-agent. An illustration of how the two types
of sensors are used is provided by Figure 6.
(b) Assigned Real agent state. This observation set provides

information about the state of the assigned real agent relative to the

Fig. 6. Training environments with placed obstacles (left). RL-agent state
representation (right). We spawn both RL-agents and real agents in the
environment. For each RL-agent we assign a real agent that need to imitate.
Our agents are equipped with distance sensors (laser lines) and visual
sensors (grid) that detect all other real agents and obstacles.
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local coordinate system of each RL-agent.We include the normalized
Relative Position, Relative Velocity, Relative Orientation and Distance.
The values of these observations are formed to always be in range
[0,1], where lower values decreases the deviation, indicating better
imitation performance and behavior replication by the RL-agent.
This formulation is crucial, as when this part of observation space
is eliminated (more in Section 4.2), these scalar observations are
set to zero, indicating a perfect imitation quality. The complete
observation space is summarized in Table 1.

Finally, we note that for all the observations described above, we
employ a two-step stacking by integrating both current and previous
observations into a single policy input. This approach equips the
agentwith a temporal component, enriching its understanding of the
environment’s state, including the direction and speed of movement
of the observed entities.

Table 1. Observation Space.

Name Description

Local Velocity (vt ) Relative to the agent’s look direction.
Goal Position (𝜌𝑡 , 𝜃𝑡 ) Distance and angle towards goal position.
Complexity (𝑤𝑐𝑜𝑚𝑝 ) Characterization of current real trajectory.
Distance Sensors Detecting Real agents and obstacles.
Visual Sensors Detecting Real agents and obstacles.

Position Position w.r.t. RL-agent’s coord. system.
Velocity Velocity w.r.t. RL-agent’s coord. system.
Orientation Orientation w.r.t. RL-agent’s coord. system.
Proximity Distance between RL-agent and Real agent.

4.5 Reward Function Design
The reward function is a crucial part in RL, as it sets the objective for
algorithm optimization [Sutton and Barto 2018]. Defining reward
terms for crowd simulation is a complex task, as people in real
life often exhibit multiple behaviors while frequently displaying a
blending of them. Thus, as crafting and balancing reward terms for
capturing that large spectrum of behaviors is extremely challenging,
we enable RL-agents to build a behavior “knowledge” by observing
the movements of real agents. We employ a reward function that
mainly evaluates the imitation performance of agents without the
need to explicitly define behavior-specific reward terms. Thus, the
following subsections describe the individual reward terms and
present our collective reward function.

4.5.1 Evaluating Imitation Performance. We employ the imitation
quality reward term 𝑅𝑡

𝑖𝑚𝑖
to evaluate how well the RL-agent per-

forms while trying to replicate its assigned real agent’s behavior, at
each simulation step 𝑡 . This reward is mainly based on 𝑞𝑡

𝑖𝑚𝑖
, which

defines the imitation quality of the agent, and is calculated by con-
sidering the deviation in local movement between the RL-agent and
its assigned real agent. We combine the following differences:

• Speed: 𝑑𝑡𝑢 = 1 − (
��𝑅𝐿𝑡𝑢 − 𝑟𝑒𝑎𝑙𝑡𝑢

��) .5
• Orientation: 𝑑𝑡𝑜 = 1 − (

��𝑅𝐿𝑡𝑜 − 𝑟𝑒𝑎𝑙𝑡𝑜

��) .5
• Proximity: 𝑑𝑡𝑝 = 1 − (∥RLtp − realtp∥2)

.5

For proximity, we set a maximum distance of 5𝑚 and normalize
the corresponding distance in the range [0, 1]. We note that when

calculating each reward, we apply the square root, rather than a
linear approach, to enforce agents minimizing even further the
deviations, in order to receive higher positive reward. Then, the
overall imitation quality 𝑞𝑖𝑚𝑖 is calculated by:

𝑞𝑡𝑖𝑚𝑖 = 𝑤𝑢 ∗ 𝑑𝑡𝑢 +𝑤𝑝 ∗ 𝑑𝑡𝑝 +𝑤𝑜 ∗ 𝑑𝑡𝑜 , (5)

where𝑤𝑢 ,𝑤𝑝 ,𝑤𝑜 ∈ [0, 1] are individual constant weights for speed,
orientation and proximity respectively, and also𝑤𝑢+𝑤𝑝+𝑤𝑜 = 1. We
conducted a dedicated study to determine the optimal combination
of {𝑤𝑢 ,𝑤𝑝 ,𝑤𝑜 }, available in the supplementary material; the results
reveal that {𝑤𝑢 = .25,𝑤𝑝 = .5,𝑤𝑜 = .25} are the optimal values.
Finally, we incorporate𝑤𝑐𝑜𝑚𝑝 into the imitation quality reward (see
Table 2) to encourage agents adhere more closely to the behavior of
the real agent, when faced with more complex behaviors. Moreover,
this addition contributes to real-time controllability over the agents’
behavior during inference.

4.5.2 Reward Function. We design a reward function encouraging
RL-agents to perform similarly to how real agents behave, while
avoiding collisions and moving smoothly. We utilize both sparse and
dense reward signals (see Table 2) to construct our reward function
𝑅(𝑡), which calculates the reward at each simulation step 𝑡 as:

𝑅(𝑡) = 𝑅𝑡
𝑔𝑜𝑎𝑙

+ 𝑅𝑡𝑐𝑜 + 𝑅𝑡𝑖𝑚𝑖 + 𝑅𝑡
𝑠𝑚𝑜𝑜𝑡ℎ

. (6)

We utilize sparse reward signals to highlight critical tasks for the
agents, emphasizing those that yield significant positive or negative
rewards. Agents receive a large positive reward 𝑅𝑡

𝑔𝑜𝑎𝑙
if they reach

their designated destination within a time frame that closely mir-
rors the actual data, specifically between 80% and 100% of the total
trajectory’s duration. This criterion encourages broader exploration,
acts as a regularization technique, and deters agents from heading
straight to their goal too soon. Moreover, we incorporate a large neg-
ative reward 𝑅𝑡𝑐𝑜 for obstacle collisions. Although we use RVO for
handling collision avoidance, as we have mentioned in Section 4.3,
we still allow agents to contact with obstacles to understand their
influence in the environment. Dense rewards are given at every
training step and are responsible for rewarding or punishing the
agents based on their immediate actions. Our main dense reward
is 𝑅𝑡

𝑖𝑚𝑖
, which has been introduced in Section 4.5.1. Additionally,

we use a negative smooth movement reward 𝑅𝑡
𝑠𝑚𝑜𝑜𝑡ℎ

that penalizes

Table 2. Metrics and Reward Signals.

Weight Range Usage Description

𝑤𝑐𝑜𝑚𝑝 [0, 1.0] Training, Inference Trajectory Complexity
𝑤𝑓 𝑎𝑑𝑒 [0, .75] Training Observation Fading Factor
𝑞𝑡
𝑖𝑚𝑖

[0, 1.0] Training Imitation Performance
𝑑𝑡
𝑠𝑚𝑜𝑜𝑡ℎ

[0, 1.0] Training Movement Difference

Event Term Reward D EE

Reached Goal 𝑅𝑡
𝑔𝑜𝑎𝑙

+.5 × 𝑞𝑡
𝑖𝑚𝑖

X ✓

Obstacle Collision 𝑅𝑡
𝑐𝑜 −.5 X ✓

Imitation Quality 𝑅𝑡
𝑖𝑚𝑖

+.005 × 𝑤𝑐𝑜𝑚𝑝 × 𝑞𝑡
𝑖𝑚𝑖

✓ X
Smooth Movement 𝑅𝑡

𝑠𝑚𝑜𝑜𝑡ℎ
−.001 × 𝑑𝑡

𝑠𝑚𝑜𝑜𝑡ℎ
✓ X

D: Dense reward, EE: Episode ends
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agents when their selected action leads to a high change in cur-
rent velocity. We calculate the difference 𝑑𝑡

𝑠𝑚𝑜𝑜𝑡ℎ
∈ [0, 1] between

current and future velocity, at each step 𝑡 , and penalize the agent
prepositionally if 𝑑𝑡

𝑠𝑚𝑜𝑜𝑡ℎ
> .5 (see Table 2).

5 EXPERIMENTS AND EVALUATION
We train our model over all four training datasets (as introduced
in Section 4.1) concurrently, using the on-policy RL method Prox-
imal Policy Optimization [Schulman et al. 2017] implemented by
the Unity’s ML-agents framework [Juliani et al. 2018], with the
parameters presented in Table 3. We use a fully connected neural
network with 3 hidden layers and 256 units, trained on a personal
computer equipped with an Intel Core i9-14900K CPU, an Nvidia
RTX 4090 GPU, and 64GB of RAM. The training was completed in
approximately one day, using 32 simultaneous Unity application
instances, each containing 12 environments.
We quantitatively and qualitatively evaluate our model by con-

ducting a list of experiments. We evaluate our work against real-
world data, two baseline models (Section 5.2), and the recent state-
of-the-art work GREIL-Crowds [Charalambous et al. 2023] (more
details in Section 5.5). For quantitative evaluations, we use relevant
statistics and methods including the Fundamental Diagram (FD),
Speed, Density, Distance to Nearest Neighbor (DNN), and Path Devi-
ation (PD). For every timestep 𝑡 , the local density 𝑑𝑡𝑎 of an agent 𝑎 is
computed by Equation 7, as presented in [Helbing et al. 2007], where
p𝑡𝑎 and p𝑡

𝑖
are the position vectors of agent 𝑎 and neighbor 𝑖 at time

𝑡 respectively, and 𝑅𝑠 = 3.6𝑚. DNN is calculated by considering the
distance to the nearest neighbour at each timestep, where for PD
we measure the distance from the current agent’s position to the
straight line connecting the spawn and goal positions.

𝑑𝑡𝑎 =
∑︁

𝑖∈𝑁 (𝑎𝑡 )

1
𝜋𝑅2𝑠

exp(−∥p𝑡𝑖 − p𝑡𝑎 ∥2/𝑅2𝑠 ). (7)

In addition, we show qualitative results by providing generated
trajectories and visual results for different scenarios, while also
presenting various animated results in the provided supplemen-
tary video. We render simulations in the Unity Game Engine to
demonstrate our model’s capabilities, using a per-agent simple ani-
mation state machine; note that CEDRL and the animator operate
independently and do not share any information about the agents’
state.

Table 3. Simulation Parameters and Training Hyperparameters.

Parameter Value Description

𝑟 .25𝑚 Agent Radius
𝑅𝑠 5𝑚 Maximum Search Distance
𝐺𝑠 3𝑚 Visual Encoding Distance
𝑇 .04𝑠 Simulation Step
𝑇𝑑 .2𝑠 Decision Step

Learning Rate 3e-4 For Gradient Descent Updates
𝛾 .995 Discount factor
Epochs 3 Training Epochs
Batch Size 2048 Batch Size
Buffer Size 20480 Buffer Size
𝛽 7.5e-3 Entropy Regularization Strength
𝜖 .2 Divergence Threshold
Time Horizon 2048 Steps for Experience Buffer

5.1 Ablation Study
We first conduct an ablation study to evaluate the influence of the
underlying collision avoidance algorithm (RVO) on agent behavior
and navigation. Specifically we compare CEDRL against two modi-
fied versions, (a) w/o RVO: the already trained model by removing
RVO and let our policy set the velocity of the agents directly, and (b)
𝑅𝑐𝑜−𝑎𝑔𝑒𝑛𝑡 : retraining our policy by incorporating another reward
term 𝑅𝑡𝑐𝑜−𝑎𝑔𝑒𝑛𝑡 = −.05 that penalize agents when colliding with
other agents, at each simulation step 𝑡 ; the episode does not end
when an agent-agent collision occurs.

We analyze the impact of RVO on agent behavior using the whole
Ped-1 training dataset. First, we compute the 𝑤𝑐𝑜𝑚𝑝 distribution
for Real data, CEDRL, and the two variations of our model. Next,
we calculate the Kullback–Leibler divergence (KLD) [Kullback and
Leibler 1951] between the three simulators and the real data (lower
KLD indicates better distribution alignment), and present the results
in the last column of Table 4. The results indicate that incorporating
RVO during training preserves agent behavior, unlike removing it
from the pre-trained model which have a negative influence.

Table 4. Ablation Study.

Metrics 𝜖 Δ𝑉𝑖 Δ𝐴𝑖 𝐸𝑖 𝑠𝑡𝑒𝑒𝑟𝐸𝑖 𝑤𝑐𝑜𝑚𝑝 ↓
Real .001 2.323 57.2 2705.4 1785.7 -
CEDRL .000 2.253 222.7 2178.8 1580.1 .135
w/o RVO .064 1.811 220.2 1765.3 1465.3 .165
𝑅𝑐𝑜−𝑎𝑔𝑒𝑛𝑡 .015 3.157 651.3 3914.8 2994.5 .137

Additionally, we assess navigation dynamics using a list of met-
rics, as presented in [Zhao et al. 2017]. In particular, for each agent
𝑖 , we use the collision rate 𝜖 , change in speed Δ𝑉𝑖 (𝑚𝑠−1), change
of angle Δ𝐴𝑖 (◦), biomechanical energy 𝐸𝑖 (𝐽 ), and biomechanical
energy to avoid collisions 𝑠𝑡𝑒𝑒𝑟𝐸𝑖 (𝐽 ). Table 4 summarizes the results
for each metric. We note that CEDRL experiences almost no colli-
sions due to RVO, w/o RVO agents collide more frequently due to
the absence of a collision handling mechanism, whereas 𝑅𝑐𝑜−𝑎𝑔𝑒𝑛𝑡
agents generate a minimal number of collisions. Next, we show that
replacing RVOwith a dedicated collision reward leads to less smooth
navigation as the collision avoidance is not performed efficiently.
Agents experience higher speeds and angle changes, expending
more energy on navigation and collision avoidance. Likewise, as
shown in Figure 7, the 𝑅𝑐𝑜−𝑎𝑔𝑒𝑛𝑡 agents sometimes show rough,
unnatural movements when they avoid collisions. While a more
refined collision avoidance reward could improve results, would
increase the complexity of the reward function, making it chal-
lenging to balance behavior-specific reward terms with those for
collision avoidance. Therefore, we argue that allowing an underly-
ing algorithm to handle collisions balances the complexity of the
reward function with smooth navigation, without impacting the
agent behaviors.

5.2 Setup
We conduct our evaluations on various environments to fully ex-
amine the capabilities of our model. Specifically, we design the
following four scenarios: (a) the replicated environment from the
real corresponding dataset, (b) an infinite environment with size
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Fig. 7. Simulated trajectories for a snapshot of Ped-1 dataset with 6 agents,
from real data, CEDRL, and two modified versions; lower color intensity
indicates higher speed.

20𝑥20𝑚 enabling a continuous flow of agents, (c) benchmark se-
tups (Hallway, Crossing, Circular), and (d) an infinite dynamically
changing environment. The evaluation related to the latter, accom-
panied by a𝑤𝑐𝑜𝑚𝑝 distribution reproduction study, is presented in
the supplementary material provided.

We compare our model against real-world seen and unseen data,
while also we utilize two baseline models, one offering behavior
diversity (CCP [Panayiotou et al. 2022]), and an RL-based method
focusing only on goal-seeking and collision avoidance (Lee et al. [Lee
et al. 2018]). First, we train the CCP-Density simulator, which is a
modified version of CCP. We state that a direct comparison against
the original CCP simulator would not enable a fair assessment as
it has not been trained on real-world data. Likewise, selecting the
dynamic optimal parameters (agents’ profiles) for every scenario is a
very challenging task, that requires individual further investigation.
Thus, we select to train an RL controller responsible for selecting
agents’ profiles overtime, trying to match the desired speed of a
given current density. Specifically, we construct the FDs for Ped-1
and UC-3 datasets, encoding speed over density. For each dataset
we train a separate per agent controller that runs on-top of CCP
and selects an agent’s profile every 5 seconds. At each decision
step, CCP-Density agent gets the following observations: current
velocity, current density, preferred speed, and a partial state of the
environment using a distance sensor. Then, the agent selects three
continuous values defining the current CCP profile (goal-seeking,
grouping, interaction); we keep collision avoidance weight constant
and set its value equal to .5 for simplicity. Moving to the reward
function, agents aim to minimize the difference between the current
and preferred speed (for the current density), thus the reward at each
decision step is given by: −𝑑𝑣 ∗𝑑𝑣 , where 𝑑𝑣 is the different between
the current and preferred agent’s speed. As a second baseline model,
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Fig. 8. Baseline models. We train a simple controller that selects
CCP [Panayiotou et al. 2022] profiles defining the agents behavior (left),
and we reproduce the work from Lee et al. [Lee et al. 2018] (right).
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Fig. 9. Fundamental diagrams for two training datasets (top). Simulated
trajectories for the UC-3 dataset, generated by each model; lower color
intensity indicates higher speed (bottom).

we replicate the work from [Lee et al. 2018] setting the maximum
speed similar to that of our model, and training it over both Ped-
1 and UC-3 datasets concurrently. We note that while this work
does not focus on behavior diversity, we include it as implements a
similar state representation and serves as a baseline deep RL-based
method for crowd navigation. Figure 8 demonstrates the training
curves for the two baseline models.

5.3 Performance on Training Real-World Data
In this series of experiments, we assess the performance of our
model using real-world training data and compare it with the two
baseline models introduced in Section 5.2. First, we employ the FD
by plotting Flow over Density trends for two real-world datasets,
showing simulations generated by our and the baselines models;
note that we use the whole duration the datasets and not part/s of
them. Thus, for each simulation, we populate the scene using the
ground-truth spawn timings, and spawn and goal positions. For the
simulations generated by our model, we set each agent’s 𝑤𝑐𝑜𝑚𝑝

equal to this of the corresponding real agent, and for CCP-Density
runs we choose the model trained on the corresponding dataset.
The upper part of Figure 9 presents the FD for Ped-1 and UC-3

datasets (generated by each model), while the bottom part illus-
trates sample trajectories for the latter. The trends from the FD
indicate that our model behaves similarly to the real-world data,
and outperforms the two baseline models. CCP-Density is close
to the real-world trend, however it struggles with higher densities
due to the lack of real-world data during training, and the way that
approaches local navigation and collision avoidance. On the other
hand, the second baseline model is expected to have higher flow as
neglects any other behaviors and guides agents directly towards
their goal. Generally, initially we show that, as density increases,
the flow increases too, where at some point higher densities slow
down the agents. Likewise, the trajectories from our model show a
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Fig. 10. Comparative analysis using two training crowd datasets.We present
Density, Speed and DNN.

higher behavioral similarity, successfully replicating both moving
and static behaviors found in UC-3 dataset.

In addition to the FD, we calculate individual statistics including
Speed, Density, and DNN, presenting the results in Figure 10. We
show that our model can better capture the range of values for
each statistics, compared to the two baseline models. While CCP-
Density performs better than Lee et al., fails to the meet dataset’s
requirements related to speed. As expected, the second baseline
model completely overlooks behaviors occurring at lower speeds.

5.3.1 Benchmark Environments. We conduct environment-specific
experiments to assess our model’s ability to replicate behaviors
observed in real-world data across a range of synthetic benchmark
scenarios. To thoroughly evaluate replication performance, we col-
lect and analyze statistics from various setups, detailed as follows:

• Infinite: spawn 50 agents in a 20× 20m environment, setting
random spawn/goal positions on the edges.

• Hallway: spawn two groups of 20 agents each in a 30 × 15m
environment, setting their goal position to the opposite side.

• Crossing: spawn four groups of 15 agents each in a 30× 30m
environment, setting their goal position to the opposite side.

• Circular : spawn 40 agents on the perimeter of a circle with
radius 10m, setting their goal position to the opposite side.

For each simulation, we sample per-agent𝑤𝑐𝑜𝑚𝑝 values from the
distributions of different real-world datasets and assign them to
agents accordingly. In Figure 11 we show results for Speed, DNN,
and PD, accompanied by the generated trajectories; we mention that
Density statistic is not utilized for this experiment, as is strongly
influenced by the number of agents and area size, which need to
be balanced across various setups. The results indicate that in the
Ped-1 dataset, the model is able to reproduce the observed behaviors,
which are mainly goal-seeking and moving in pairs/groups. Particu-
larly, the consistency of speed with real-world data is maintained
in most environments, except in the Hallway scenario, where the
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Fig. 11. Comparative analysis on various benchmark environments. We
present Speed, DNN, and Path Deviation, accompanied by simulated trajec-
tories.

available space for navigation is limited, and in the Circular sce-
nario, where numerous agents gather towards the center. In terms
of PD, we observe a greater deviation in the Infinite and Crossing
scenarios, where more space is provided for navigation. Moving
to UC-3 dataset analysis, we observe slightly better coverage in
Speed and PD statistics, however we notice a higher DNN across
all scenarios. Finally, we can clearly support that, by comparing the
statistics between the two datasets, the average speed and DNN are
lower in the UC-3 dataset, compared to Ped-1. This makes sense as
the former dataset exhibits a higher occurrence of stationary and
interactive behaviors.

5.4 Generalization to Unseen Real-World Data
In this subsection, we evaluate the generalization performance of
our model on unseen real-world data, using similar statistics with
those in Section 5.3. We employ two additional crowd datasets, Ped-
3 [Lerner et al. 2007] and Flock [Charalambous et al. 2014]. Ped-3 is
another Pedestrians dataset, containing 180 tracked trajectories with
a total duration of 5 minutes, where Flock showcases a group of 24
individuals walking across a churchyard for 30 seconds, simulating
a human flock-like behavior. Figure 12 presents the fundamental
diagram for each dataset, accompanied by sample trajectories; we
note that these datasets are also unseen by the two baseline mod-
els. We observe that our model can better match the trend of the
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Fig. 12. Fundamental diagrams for two unseen datasets (top). Simulated
trajectories for Flock dataset, generated by each model; lower color intensity
indicates higher speed (bottom).

Flock dataset, compared to the baseline models. Regarding the Ped-3
dataset, we initially notice a lower flow at low to medium densities,
yet it exhibits superior performance at higher densities and more
comprehensively covers the entire flow spectrum compared to CCP-
Density. The results demonstrate that our model can generalize to
unseen real-world datasets, both those with similar environmental
structures and behavior distributions (Ped-3) and those that are
completely novel (Flock).

Continuing the analysis on generalization, we calculate additional
individual statistics. In Figure 13 we plot Density, Speed, and DNN
for the two unseen datasets. First, our model performs well on the
Flock dataset across all statistics, notably outperforming the two
baseline models in speed. Unlike the other models, which neglect
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Fig. 13. Comparative analysis using two unseen crowd datasets. We present
Density, Speed, and DNN.

more complex behaviors and direct agents straight to the goal, CE-
DRL captures a broader range of behaviors; this can be noticed in
the trajectories presented at the bottom section of Figure 12. Moving
to the Ped-3 dataset, our model is able to accurately match Density
and DNN. As previously showed in the FD of this dataset, our model
produces a lower average speed but more accurately captures the
ground-truth speed range, compared to the baseline models. Ani-
mated results can be viewed in the supplementary video provided.

5.5 Comparison with a Guided-RL Approach
In this section, we evaluate our model by comparing it to the recent
guided RL approach, GREIL-Crowds [Charalambous et al. 2023].
This method was chosen for a separate comparison because it di-
verges from conventional deep RL techniques and uses a distinct
policy state space that omits environmental elements. To conduct
this evaluation, we derive a set of scenarios in which GREIL was
trained and perform both quantitative and qualitative assessments.
We apply our model (which was trained simultaneously on multiple
datasets), and highlight that the Ped-3 and Flock datasets were ex-
cluded during training. It is important to note that GREIL-Crowds
uses policies specifically trained for each dataset. To ensure a fair
comparison, we also exclude any environmental elements from the
state of our model.

Beginning with the quantitative evaluation, we construct the FDs
for the three available scenarios (Ped-2, Ped-3, and Flock), present-
ing the results in Figure 14. First, with respect to Ped-2, we observe
that our model can more closely match the dynamics of this dataset,
with GREIL producing higher flows as it struggles with the station-
ary behaviors occurring in the current data. Second, regarding the
Ped-3 dataset, in addition to the default dataset’s characteristics, we
include the trends of a crossing scenario, where we increase the
agent density by adding a rotated version of the data in the environ-
ment. In this scenario, while both models match the dynamics of the
default data, we interestingly see that they both perform better in
the increased density setup. Lastly, in the Flock scenario, although
GREIL shows marginally better performance, our model displays
a trend comparable to the real-world data, despite this dataset not
being included in the training.

Although the FD offers a general overview of crowd performance,
the qualitative evaluation offers a more precise understanding of
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Fig. 14. Fundamental diagrams presenting trends generated from our model
and GREIL-Crowds, for three distinct datasets and a total of four scenarios.
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Fig. 15. Simulated trajectories for Ped-3 dataset, generated by our model
and GREIL-Crowds; lower color intensity indicates higher speed.

crowd simulation quality, especially when focusing on diverse be-
haviors. Figure 15 presents the tracked trajectories for the Ped-3
dataset, as simulated by the two models. Although both models suc-
ceed in guiding agents to their assigned destination and matching
observed behaviors, our model tends to produce smoother naviga-
tion. In particular, we show that the discrete action space in GREIL
detracts from the plausibility of the simulation, while the move-
ment of the agents is sometimes negatively impacted by nearby
passing agents, leading to tangled trajectories due to unexpected
starts, stops, or direction changes. Although these insights can be
gathered from the provided figure, we strongly recommend that the
readers refer to the supplementary video for a more comprehensive
understanding of the results.

In conclusion, the results demonstrate that our method achieves
state-of-the-art performance, delivering smoother simulations even
in unseen scenarios. Moreover, our approach follows a simpler learn-
ing process compared to GREIL’s methodology, enhances significant
control over agents’ behaviors, integrates environmental factors
into the agent state, and utilizes a continuous action space.

5.6 Complexity Sensitivity Analysis
A key aspect of our framework is its ability to enable real-time
controllability over the agents’ behaviors. Thus, in this section we
conduct experiments in various environments to examine how dif-
ferent𝑤𝑐𝑜𝑚𝑝 values influence the generated actions. We perform
our assessments in various scenarios: (a) real-world training (Ped-
1) and unseen (Flock) environments, and (b) the four benchmark
environments, as previously presented in Section 5.3.1. Specifically,
we assign the same 𝑤𝑐𝑜𝑚𝑝 value to all agents and run individual
simulations increasing the complexity metric by an interval of .1.
Then, we compute Speed, DNN and Path Deviation, illustrating the
results in Figure 16. Moreover, we show simulated trajectories for
selected environments with varying complexity values in Figure 17.
The statistics indicate that Speed and Path Deviation are signifi-
cantly influenced by increased complexity values, a trend that is
consistent across all scenarios. Furthermore, we show that DNN re-
mains relatively stable in the benchmark scenarios, with occasional
fluctuations, but without any clear upward or downward trend. This
could be attributed to the challenges posed by the benchmark envi-
ronments and their unnatural configurations, where multiple agents
are spawned simultaneously with similar destinations and tasks,
coupled with the presence of high-density areas; agents encounter
a similar situation on the Flock scenario too. In contrast, in the Ped-
1 scenario, where the agent spawning and setup is more natural,
we observe a downward trend in DDN as the complexity metric
increases, indicating higher level of interacting behaviors.
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Fig. 16. Complexity Sensitivity (Quantitative). We present Speed, DNN and
Path Deviation, over different 𝑤𝑐𝑜𝑚𝑝 intervals, for training data (Ped-1),
unseen data (Flock), and benchmark setups (Infinite, Hallway, Crossing,
and Circular).

Subsequently, moving to the qualitative results, presented in Fig-
ure 17, we can also justify the change over the agents’ behaviors
under different complexity values. First, in relation to the Ped-1
dataset, for low complexities ([.1, .3]) agents perform mainly goal-
seeking behavior and walk directly to their goal with high speed.
For medium values ([.4, .7]), we observe a mixture of behaviors;
some agents exhibit goal-seeking, while others wander around and
participate in static interactions. Finally, at higher values, the overall
speed of the agents decreases and their trajectories become more
disorganized due to the emergence of complex intermediate behav-
iors. Focusing on the presented benchmark environments, the key
observation is the increased Path Deviation for higher complexity
values. Interestingly, in the Circular setup with𝑤𝑐𝑜𝑚𝑝 ≥ .7, agents
appear to move more efficiently as intermediate behaviors drive
them to avoid the center of the circle, where bottlenecks occur at
lower values, due to the nature of this setup. It is observed that in
the circular environment, agents initially tend to move towards the
left side. This behavior arises due to the structure and symmetry of
the environment, coupled with the unnatural spawning of agents,
where the RVO simulator consistently favors the left side to avoid
any initial collisions.

Concluding this study, we contend that varying complexity values
influence the agents’ behaviors and these changes are observable
and consistent across different environments, both real and syn-
thetic. We strongly encourage readers to watch the supplementary
video for this study’s animated results, accompanied by a demon-
stration of real-time𝑤𝑐𝑜𝑚𝑝 value manipulation.
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Fig. 17. Complexity Sensitivity (Qualitative). We show simulated trajec-
tories, over various 𝑤𝑐𝑜𝑚𝑝 intervals, for real-world data and benchmark
(Crossing and Circular) setups; lower color intensity indicates higher speed.

6 DISCUSSION AND FUTURE WORK
In this work, we present CEDRL, a simple RL-based framework
allowing virtual agents to perform various behaviors observed in
real-world data. These behaviors spanning from simple ones, such as
goal-seeking, to more complex ones like wandering around, group-
formations, static interactions, moving pairs, and more. In Figure 18
we display rendered simulations, showcasing a variety of agent
behaviors in action. Our system allows users to populate virtual
environments with diverse agents, adjusting their behavior accord-
ingly, even in runtime. Unlike traditional RL-based approaches, our
methodology combines imitation learning characteristics with deep
RL, and gradually transitions agents from guided to pure RL dur-
ing training, eliminating the need for defining individual behavior-
specific reward signals. This enables agents to acquire a behavior
knowledge by observing the movements of humans. Moreover, to
enable controllability, a feature often lacking in current works, we
employ a trajectory characterization metric. This metric is a multi-
faceted measure that combines various aspects of movement and
crowd dynamics, which is incorporated as input to our policy, influ-
encing our parametric reward function.

We conduct both quantitative and qualitative evaluations and
assess the performance of our model over training and unseen
real-world data. The results demonstrate that our model not only
reproduces the behaviors observed in each dataset, but also transfers
them on novel synthetic environments. It performs better compared
to the baseline models, achieves state-of-the-art performance and
offers a broader range of capabilities and features. Our analysis of
the characterization metric reveals that various values consistently
influence the overall behavior of the agents, in different environ-
mental settings, resulting in a diverse crowd simulator.

Autonomy of agents. Despite the fact that our method can pro-
duce a wide range of behaviors, the fact that each agent acts inde-
pendently shows its impact. Although our training data cover a wide
spectrum of behaviors, they may not contain more intrigue and rare
interacting ones. We would like to explore methods for refining our
learning strategy to include cooperation between agents, improving
the simulation at a microscopic level.

Reward function design. We show that defining a simple reward
function, considering only local movement characteristics (posi-
tion, velocity, and orientation) enables agents to learn and replicate
most of the behaviors presented. However, in certain cases where a
specific behavior is influenced by the state of neighboring agents,
our agents may struggle to perform as expected. Thus, additional
research is needed to incorporate terms into the reward function
that considers not just the imitation quality of individual real agents,
but also their interactions with others and the environment.

Group dynamics. Our framework allows the presence of group
dynamics, as agents perform both moving and static interacting
behaviors. However, group formation is implicitly influenced by
spawn/goal positions and timing. For instance, a group of agents ini-
tialized together, having similar goals, will stay within their group.
Thus, it will be interesting to explore ways of enhancing the group
dynamics of our simulator. A possible approach would be to incor-
porate explicit group constraints, as presented by Ren et al. [Ren
et al. 2016], during our training phase.

Complexity weight as authoring tool. We use 𝑤𝑐𝑜𝑚𝑝 to define
the high-level behavior characteristics of an agent, as a way of pro-
viding simulation authoring capabilities. While this is an easy and
effective way for controlling the agents’ behaviors, it may neglect
finer differences between individual behaviors due to the nature of
the metric. A possible approach to partially overcome this is to use
individual statistics as varying weights (similar to [Panayiotou et al.
2022]); however, this approach significantly increases complexity,
affecting both the learning process and the end-user experience, as
different weights must be precisely balanced for the agent to per-
form the desired behavior. A more promising direction is to explore
ways of extracting and mapping behaviors to high-level human
characteristics that will define, even dynamically, the actions of
the agents. Furthermore, given that our framework distinguishes
between data characterization and learning as separate elements, an
enhanced characterization that includes learned components could
also be applied and passed as input to our policy.
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Fig. 18. Rendered simulations generated by our framework. We demonstrate the diverse behaviors our system can capture, including human flocks and both
individual and collective goal-seeking activities, where people move either solo or in pairs/groups. Additionally, the system handles stationary behaviors and
can manage a mixture of different behaviors concurrently.
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