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Figure 1: We train a single policy for configurable agents which we can then use to simulate crowds with diverse behaviors in
complex environments.

ABSTRACT
Diversity among agents’ behaviors and heterogeneity in virtual
crowds in general, is an important aspect of crowd simulation as it
is crucial to the perceived realism and plausibility of the resulting
simulations. Heterogeneous crowds constitute the pillar in creating
numerous real-life scenarios such as museum exhibitions, which
require variety in agent behaviors, from basic collision avoidance
to more complex interactions both among agents and with environ-
mental features. Most of the existing systems optimize for specific
behaviors such as goal seeking, and neglect to take into account
other behaviors and how these interact together to form diverse
agent profiles. In this paper, we present a RL-based framework for
learning multiple agent behaviors concurrently. We optimize the
agent policy by varying the importance of the selected behaviors
(goal seeking, collision avoidance, interaction with environment,
and grouping) while training; essentially we have a reward function
that changes dynamically during training. The importance of each
separate sub-behavior is added as input to the policy, resulting in
the development of a single model capable of capturing as well as
enabling dynamic run-time manipulation of agent profiles; thus
allowing configurable profiles. Through a series of experiments, we
verify that our system provides users with the ability to design
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virtual scenes; control and mix agent behaviors thus creating per-
sonality profiles, and assign different profiles to groups of agents.
Moreover, we demonstrate that interestingly the proposed model
generalizes to situations not seen in the training data such as a)
crowds with higher density, b) behavior weights that are outside
the training intervals and c) to scenes with more intricate environ-
ment layouts. Code, data and trained policies for this paper are at
https://github.com/veupnea/CCP.
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1 INTRODUCTION
Human crowds are a fundamental feature of most real-world envi-
ronments. Depending on the environment, we can observe different
behaviors; in a street for example, people move around (often-times)
in small groups to reach their goals, whereas in a market they wan-
der about and group around certain kiosks to buy goods. Being able
to easily and efficiently simulate and author all of these context-
specific behaviors is important in several domains (entertainment,

https://orcid.org/0000-0002-7614-1059
https://orcid.org/0000-0003-0699-2445
https://orcid.org/0000-0001-9854-3369
https://orcid.org/0000-0001-5136-8890
https://orcid.org/0000-0002-7230-5132
https://doi.org/10.1145/3528233.3530712
https://github.com/veupnea/CCP
https://doi.org/10.1145/3528233.3530712


SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Panayiotou et al.

urban studies, architecture, etc.). Several crowd simulation tech-
niques have been developed; most of them requiring artists and
users to set several parameters to achieve the desired outcome. This
is not an easy task, especially by non-experts.

Recently, several data-driven methods have been explored for
learning behavior models in the context of crowd simulation, with
the majority of them being Supervised Learning (SL) in nature.
Several researchers introduced Reinforcement Learning (RL) as an
attractive alternative to these techniques; the premise here is to
learn via trial-and-error by optimizing for simple scalar reward
signals. The data in this case is being simulated instead of given
a-priori, with occasional scalar values indicating rewards or penal-
ties for certain events such as collisions with others or reaching
goals. Reward signals are both a blessing and a curse; easy to un-
derstand (e.g., +1 for reaching goal) but also notoriously difficult
to balance especially when having multiple behaviors at the same
time. In a typical RL setting, the rewards are defined a-priori and
are fixed during training, keeping the behavior of the agent fixed
both during and after training. This however introduces challenges;
the relative values of the different rewards and their frequency
affects the learned behavior, and often defining proper values to
achieve certain behaviors is not straightforward. Consider for ex-
ample the simple case of optimizing for collision avoidance and
goal seeking. Setting a high penalty for collisions, might lead to
hesitant agents never reaching their goals or moving in unnatural
patterns, whereas a very high reward for seeking a goal might lead
to agents overlapping or running over others, not caring for colli-
sions. Researchers typically work with intuition; they try different
values and keep those that yield desirable results. We note that
simply selecting the model that achieves higher reward does not
make much sense as each different training session of RL optimizes
for different ranges of values. This is cumbersome; training takes
time and thus manually selecting the best set of values is quite
challenging.

Inspired by recent work on configurable game playing agents
[Le Pelletier deWoillemont et al. 2021] we propose a novel RL-based
framework to concurrently learn multiple diverse crowd behaviors
by varying agent profiles during training. Profiles are intuitively
described by a set of weights for different reward signals (i.e., goal
seeking, collision avoidance, group and interactions with the envi-
ronment); different mixtures of these weights essentially describe
different profiles (e.g., more grouping-oriented agents are deemed
more sociable). These profile values are added as control signals to
the input of the policy network; therefore, learning multiple policies
at the same time during training. We propose a curriculum-based
approach to train crowds by modifying both the complexity of the
environment and the combination of weights as training progresses.
Having trained agents possessing diverse profiles concurrently, we
can then create large-scale crowd simulations capable of exhibiting
diverse behaviors (profiles) that are mixtures of the basic behaviors;
these can easily be modified at run-time by users. An additionally
important aspect of the proposed framework is its generalization
properties. It suffers less from the amount of data, compared to SL
approaches, and it can easily cope with higher agent density and
deviating environments. Moreover, traditional crowd simulation
systems are reactive in nature and weigh behaviors in the action
space (i.e., weighted sum of actions returned by different behavior

modules) without considering long-term consequences and inter-
actions between the different behaviors. In the proposed approach,
behaviors are defined by the dynamically changing weights of the
reward signals; agents therefore learn policies that consider both
long-term effects of actions and interactions between the behaviors.
Ultimately, our proposed framework simulates various behaviors
found in human crowds such as social interactions, collision avoid-
ance and interactions with areas of interest (e.g., museum exhibits),
creating natural-moving agents instead of optimizing individual
aspects, and allows for intuitive control over their mixture.

2 RELATEDWORK
Simulating crowds and crowd behaviors has been extensively ex-
plored throughout the years, with various techniques developed
to abide by a diverse range of scenarios and objectives [Pelechano
et al. 2016; van Toll and Pettré 2021]. Microscopic approaches have
extensively been used to achieve behavior diversity; macroscopic
approaches model the crowd as a whole and therefore diversity is
not a priority. Data-driven and Machine Learning approaches have
gained increasing popularity in recent years due to promising re-
sults. We focus our description of related work on a) heterogeneous
crowds with attention to data-driven methods, b) crowd authoring
and c) RL, which are the most relevant techniques to our work.

Heterogeneity in Crowds. Generating behavioral diversity in vir-
tual crowds has been addressed in the literature with a variety
of approaches; early works use predefined weights for different
behaviors to achieve such heterogeneity [Reynolds 1999; Shao
and Terzopoulos 2005]. Recently, Ren et al. [2016] incorporated
diverse group properties in groups of agents controllable via user
constraints. More similar to our concept, several researchers [Du-
rupinar et al. 2011; Guy et al. 2011; Kim et al. 2012] focused on
behavior diversity in terms of personality traits; these expose some
parameters to users to allow for control of agent behaviors. Even
though there is previous research considering profiles in the context
of crowd simulation, the scope of our study concerns the degree to
which data can be used to represent such behavior diversity.

In data-driven methods, the crowd simulation model is implicitly
defined by example data. Early data-driven approaches were graph-
based [Kwon et al. 2008; Lai et al. 2005], similar to methods in the
Character Animation literature [Kovar et al. 2002]. These methods
however remain limited to group navigation (e.g., flocking) and fail
to reflect the variations of behaviors found in human crowds. The
need to simulate behavior diversity found in real-life crowds, led to
more sophisticated and practical approaches. One family of such ap-
proaches creates databases of examples; agents simply try to match
these during simulation time [Lee et al. 2007; Lerner et al. 2007].
Some extensions to these methods added secondary actions for
increased realism [Lerner et al. 2010; Zhao et al. 2017]. Early works
inspired by this reasoning, like Metoyer and Hodgins [2003] al-
lowed the user to define specific examples of behaviors. Morphable
crowds by Ju et al. [2010] focused on blending the different crowd
styles represented by the input data. Charalambous and Chrysan-
thou [2014] used Temporal Perception Patterns to represent state
and introduced PAG (Perception-Action-Graph) to improve simula-
tion quality and performance of data-driven methods. Despite the
significant improvements achieved by these methods, the results
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highly depend on the variability and amount of input data, therefore
accumulating errors over time and failing to consider long-term
effects of agents’ actions. Hence, unwanted or unnatural behaviors
are observed, reducing the generalizability of these systems.

Other methods use real-world data to find optimal parameters for
given systems. There is extensive research tackling simulation as-
pects like collision avoidance and steering, primarily estimating pa-
rameters corresponding to anticipation and time-to-collision [Paris
et al. 2007; Pettré et al. 2009; van Basten et al. 2009]. These data-
driven techniques are not exempt from the limitations of the under-
lying behavior model, despite their success in refining them. Several
researchers use reference crowd data to analyze simulated crowds.
Such analysis often includes comparisons of simulated results to the
corresponding results derived from the data [Charalambous et al.
2014; Guy et al. 2012; He et al. 2020; Kapadia et al. 2011; Karamouzas
et al. 2018; Wang et al. 2017]. Wolinski et al. [2014] find optimal sets
of parameters subject to certain metrics and reference crowd data,
enabling fair comparison between crowd simulators. He et al. [2020]
additionally use data to guide simulations in environments that are
similar to the ones in the input data.

Crowd Authoring. Controlling crowd simulations at a higher
level is crucial to several scenarios since it allows users to easily
and efficiently author agents’ behaviors according to their wishes.
This requires intuitive tools which are highly dependent on what
simulation aspect the users aim to control [Lemonari et al. 2022].
For the path-planning aspect, past literature heavily uses sketching
interfaces [Ju et al. 2010; Metoyer and Hodgins 2003]. In contrast,
authoring the animation and visualization aspects usually entails
asset and template manipulation [Maïm et al. 2009; Ulicny et al.
2004]. Editing has also been widely explored in literature, with the
more user-friendly systems incorporating manipulation handles.
For example, Kwon et al. [2008], propose deformation gestures as
a post-processing tool for group motion editing. One of the most
challenging aspects in authoring is controlling high-level behav-
iors such as describing agendas, desires and even personalities;
these behaviors benefit the expressiveness and realism of simu-
lations [Kraayenbrink et al. 2012]. Authoring local movements
can be a consequence of controlling high-level behaviors or con-
trolling certain local movement aspects; mainly involving coding
low-level parameters such as time horizon for the avoidance strat-
egy [Karamouzas et al. 2017].

In our work we learn a configurable crowd model that allows us
to mix and learn several behaviors at the same time; to our knowl-
edge this was never addressed in the crowd simulation literature
before. Previous works weigh the output of different reactive be-
havior models (i.e., in the action space) [Reynolds 1999; Shao and
Terzopoulos 2005], whereas in the proposed approach we use con-
trol signals as inputs to a non-linear learned policy. At simulation
time we can easily modify and mix the behavior of agents in a
crowd by modifying simple sliders. The effect of the change in such
parameter values is immediate, logical and intuitive, allowing naïve
users to define crowd profiles as they intend to.

Reinforcement Learning (RL). With the rise of Deep Learning and
its wide range of applications, researchers naturally explored Deep
RL for crowd simulation. In particular, RL has proven to be a useful
tool for learning optimal strategies in sequential decision making

problems [Sutton and Barto 2018; Szepesvári 2010]. The introduc-
tion of Deep Q-Learning (DQL) [Mnih et al. 2015] and other Deep RL
approaches such as Proximal Policy Optimization (PPO) [Schulman
et al. 2017] inspired further research on how these techniques could
be used in the context of crowd simulation. Treuille et al. [2007]
demonstrated the potential of RL in the domain of crowd simulation
by producing characters navigating environments while perform-
ing collision avoidance with moving obstacles; Peng et al. [2017]
expanded on this idea to physically-based characters. Several re-
searchers developed crowd simulation policies via the development
of effective RL strategies [Godoy et al. 2015; Henry et al. 2010; Lee
et al. 2018; Martinez-Gil et al. 2011].

However, most of the past work involving Deep RL in the crowd
simulation literature focused on investigating the effect of different
reward functions. These methods make simplifying assumptions or
have simple manually-defined reward functions since they attempt
to capture specific aspects of crowds such as collision avoidance
and goal reaching [Lee et al. 2018; Long et al. 2017; Martinez-Gil
et al. 2017; Sun et al. 2019]. Most of the time, researchers define a
set of simple reward signals and hand-tune them until they get the
desirable result; this is time consuming (training is typically slow)
and inefficient since it requires trial-and-error of different values.
Moreover, adding new behaviors in the mix requires readjustment
of the different reward signals to balance between the different
behaviors and therefore retraining. In the end researchers find a
set of values that works well for specific scenarios and stick with
them.

This leads to virtual crowds with uniform behavior that do not
have the variability of actual crowds, and with limited control over
behavior parameters after training. Recently, several researchers
started exploring policy parameterization techniques to successfully
learnmore generalizable and complex tasks such as learning a broad
family of motor skills from limited amounts of reference data [Lee
et al. 2021] or adapting physics-based motion on characters with
different body shapes [Won and Lee 2019]. Recently, Hu et al. [2021]
proposed a parametric RL-basedmethod for heterogeneous collision
avoidance behaviors in crowds; agent parameters such as preferred
velocities are varied during training and are input to the control
policy. All of these methods add a set of control signals to the input
of the policy and have a predefined reward function with constant
weighting between the different learned subtasks (goal reaching,
collision avoidance, walk forward, etc).

In this work, we aim to capture multiple behaviors concurrently
by selecting and mixing a subset of different basic ones; we selected
collision avoidance, goal seeking, grouping and interaction with
objects of interest (more behaviors can easily be added if needed).
We allow for the variation of the importance (weight) of each of
these behaviors during training time; in essence we optimize a
policy with a multitude of reward functions. Therefore, we learn a
single crowd model that captures many different agent behaviors; an
agent’s behavior can simply and efficiently be manipulated at run-
time by adjusting these weights. We got inspiration from the work
by de Woillemont et al. [2021] where multiple player strategies
are being trained simultaneously in a simple two player game,
achieving large variety among their behaviors, while preserving
the respective performance. Despite the conceptual similarities,
we work in a challenging domain that includes many simulated
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characters with different and diverse profiles at the same time.
Managing to allow agents to balance each sub-behavior differently
(i.e., having different profiles) is thus a focal point of our research.

3 THE CCP FRAMEWORK
We divide our system in two distinct phases: training, and run-time
simulation (Fig. 1). During the training phase: a) multiple agents
are concurrently exposed to varying environment conditions such
as the environmental setup, the types of buildings/props, their
placement, and distribution of other agents, and b) the agents’
profile is varied dynamically by adjusting the relative importance
of different reward signals. During run-time simulation, agents in
a crowd are assigned goal positions and profiles which can be
changed dynamically.

For training we use Proximal Policy Optimization (PPO) which is
an on-policy RL technique [Schulman et al. 2017]; agents aim to op-
timize their behaviors to maximize the expected cumulative sum of
the dictated reward signals. Instead of manually defining different
rewards, we vary the weight of different reward signals during the
training phase (inspired by [Le Pelletier de Woillemont et al. 2021]).
The intuition behind this is to train agents that are capable of doing
multiple, diverse behaviors and allow for the dynamic adaptation
of these behaviors. For this to work, we concatenate these reward
weights to the input of the policy network (i.e., as part of the agents’
observations); these weights essentially describe the profile of an
agent and affect how that agent acts in the environment. Alterna-
tively we could train multiple policies and then combine them by
e.g., a blending of the output actions; this is not always possible.
Following such an approach entails exposing agents to a limited
set of behaviors during training. In most cases, the behaviors that
all agents have, are uniform. Consider mixing a collision avoidance
behavior with a grouping behavior; agents were never exposed to
a mix between the two. This is crucial; mixing policies will result
in unnatural results. We model agents as circles that move on a 2D
plane; contrary to most crowd models, our agents have different
look and move directions to allow for more diverse actions such
as sidestepping and looking towards objects of interest or group
members (Fig. 2). Agents work in a decentralized manner, each
having partial knowledge of the environment state. We use discrete
actions and move the agents by discretely changing their velocity
keeping it under the maximum speed.

Figure 2: A character from a crowd and its observations.

Table 1: Rewards per event and corresponding weights.

Weight Range Behavior

𝑤𝑔 [.1, 1.8] Goal Seeking
𝑤𝑐𝑎 [.5, 3.5] Collision Avoidance
𝑤𝑔𝑟 [−3, 5] Grouping
𝑤𝑖 [−5, 5] Interaction

Event Symbol Base Reward Weight Dense

Reached Goal 𝑅𝑔 +1.0 𝑤𝑔 N
Agent Collision 𝑅𝑐𝑎 -.01 𝑤𝑐𝑎 N
Obstacle Collision 𝑅𝑐𝑜 -.5 𝑤𝑐𝑎 N

Towards Goal 𝑅𝑔𝑡 +.00075 𝑤𝑔 Y
Away from Goal 𝑅𝑔𝑎 -.00025 𝑤𝑔 Y
In Group 𝑅𝑔𝑟 +.001 𝑤𝑔𝑟 Y
Interacting 𝑅𝑖 +.001 𝑤𝑖 Y
Living Penalty 𝑅𝑙 -.00015 𝑤𝑔 Y

3.1 Rewards
RL algorithms optimize an agent’s decisions in order to maximize
expected cumulative reward over time [Sutton and Barto 1998].
The reward function is very important since it defines the task the
RL algorithm is optimizing for; proper selection and balancing of
different reward signals is therefore crucial to achieve desirable
results. Defining rewards for crowd simulation is not trivial; people
in the real world balance between several different sub-objectives
such as moving towards goals, avoiding collisions, moving with oth-
ers or stopping to observe a street performance. Moreover, people
have different profiles (aggressive, procrastinators, etc.) and moods.
Using a traditional RL algorithm would require training a differ-
ent model for each of these profiles; this is problematic. Instead of
hard-coded weights for the different reward signals, we decided to
train a model for different combinations of primitive subtasks: a)
goal seeking, b) collision avoidance, c) grouping and d) interaction
with points of interest (POIs). For each of these four categories we
have different ranges of weights (Table 1); these were selected by
experience and experimentation. A set of values {𝑤𝑔,𝑤𝑐𝑎,𝑤𝑔𝑟 ,𝑤𝑖 }
for each of these weights define a profile; an agent having𝑤𝑔 = 1
for instance is more goal-oriented than an agent that has𝑤𝑔 = .2.
During training, these values are randomized and are part of an
agent’s observations (Section 3.2). We define both sparse and dense
reward signals with corresponding configurable weights (Table 1);
the total reward 𝑅𝑡 at any given simulation step 𝑡 is:

𝑅𝑡 = 𝑤𝑔 (𝑅𝑔 +𝑅𝑔𝑡 +𝑅𝑔𝑎 +𝑅𝑙 ) +𝑤𝑐𝑎 (𝑅𝑐𝑎 +𝑅𝑐𝑜 ) +𝑤𝑔𝑟𝑅𝑔𝑟 +𝑤𝑖𝑅𝑖 (1)

Sparse reward signals include a large positive reward 𝑅𝑔 when
agents reach their goal, and penalties when agents collide with
other agents or obstacles (𝑅𝑐𝑎, 𝑅𝑐𝑜 ); colliding with obstacles has a
larger penalty. Dense rewards are given at every step; we positively
reward agents when a) they move towards their goal (𝑅𝑔𝑡 ), b) are
in groups (𝑅𝑔𝑟 ) or c) interact with POIs (𝑅𝑖 ), whereas we penalize
them when they do not move towards goals (𝑅𝑔𝑎). We additionally
have a living penalty 𝑅𝑙 to motivate agents to move based on their
desire to reach a goal. An agent is moving towards its goal if the
distance to the goal decreased from the previous step and if the
look direction is towards the goal (we set |𝜃 | ≤ 45𝑜 ) . An agent is
part of a group if a) the number of nearest neighbors 𝑁 is less than
a predefined maximum number 𝑁𝑇 and b) the angle to the center
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Table 2: Default values for hyperparameters

Parameter Value Description

𝑟 .5𝑚 Agent Radius
𝑅𝑠 7𝑚 Maximum search distance
𝑇 .04𝑠 Simulation step

Learning Rate 3e-4 For Gradient Descent Updates
𝛾 .99 Discount factor
𝐻 15000 Maximum steps per episode
Epochs 3 Training Epochs
Batch Size 1024 Batch Size
Buffer Size 10240 Buffer Size
𝛽 5e-3 Entropy Regularization Strength
𝜖 .2 Divergence Threshold

of mass of the neighbors is small. 𝑁𝑇 is a parameter that models
discomfort of agents being in dense crowds; we set 𝑁𝑇 ∈ [3, 5] in
our experiments; this parameter could potentially be added in the
profile parameters. Similarly, an agent is interacting with a POI if it
is looking towards the center of that object and has 𝑁 ≤ 𝑁𝑇 agents
around it to avoid overcrowding. We note that we set 𝑤𝑐𝑎 > 0
and 𝑤𝑔 > 0 so that all agents have some sense of goal seeking
and collision avoidance. Large values of𝑤𝑐𝑎 and𝑤𝑔 indicate how
aggressively agents avoid collisions and pursue goals. We note
that for easier relative comparison between behaviors and for the
demos we use normalized weights 𝑤 ∈ [0, 1]; e.g., a value 0 for𝑤𝑖 ,
corresponds to −5. During training, Equation 1 uses the weight
ranges shown in Table 1.

3.2 Observations
Agents make decentralized decisions by collecting partial observa-
tions of the environment state (Fig. 2); these contain relevant and
sufficient information for successful learning. The local coordinate
system of an agent is aligned with its look direction. Observations
include a) goal oriented features, b) distinct sets of rays that measure
distances to other agents and POIs (obstacles, interaction areas), and
c) profile parameters. More precisely, we collect: a) Local velocity
v relative to the look direction, b) Relative goal position described
by the tuple (𝜌, 𝜃 ) (𝜌 ∈ [0, 1] is the distance to the goal normalised
by a maximum distance and 𝜃 ∈ [0, 2𝜋] is the angle between the
agent’s look direction and the vector towards the goal position),
c) profile parameters are the normalized weights {𝑤𝑔,𝑤𝑐𝑎,𝑤𝑔𝑟 ,𝑤𝑖 }
for the different reward signals and d) three sets of distance sensors
for agents, obstacles and POIs (we cast 3∗30 rays uniformly around
the agent up to a maximum distance of 7𝑚).

3.3 Actions
Agents can take one out of seven available actions: Stand Still (SS),
Move Forwards and Backwards (MF, MB), Rotate Left and Right (RL,
RR) and Move Left and Right (ML, MR). We set a maximum forward
moving (MF) speed of 1.3𝑚/𝑠 ; for all other moving directions (MB,
ML and MR) this is set to .13𝑚/𝑠 since it is more natural for people
to move in a forward direction.

3.4 Training Strategy
We use a simple Fully Connected Neural Network to model the
policy with two hidden layers each having 128 nodes. It takes as

input the agents’ observations (Section 3.2) and outputs the action
to be taken by the agent. We use the PPO algorithm to train the
network with the parameters shown in Table 2.

We use a curriculum-based approach to train agents to behave
as part of diverse crowds; instead of starting immediately to train
agents to handle every possible situation, we gradually increase
the difficulty of the environment and the behaviors the agents
have to face. First, we set up a training environment similar to the
one in Fig. 2 (right) with obstacles (blue boxes), POIs (red boxes)
and source/destination areas (green boxes). During training, we
randomly initialize agents (yellow circles) in the specified areas
and set random destination points inside another such area. Each
agent is trained individually; when a single agent reaches its goal,
collides with an obstacle (not other agents) or a maximum number
of steps is reached its episode finishes, a new agent is initialized
in the same environment, and the other agents simply continue
their training. To gradually introduce more difficult tasks to the
agents, we a) start in a simple environment with a small number of
agents, POIs and obstacles and gradually introduce more complex
environments with more agents, POIs and obstacles, b) randomize
weights of only one of the behaviors before we start combining
them, c) randomize weights near their minimum and maximum
values before we cover the entire spectrum, and d) randomize POIs
and obstacles. To avoid rapidly changing policies during training,
the weights are kept constant for several training episodes instead
of randomizing them every step or episode.

4 EXPERIMENTS AND EVALUATION
We trained our models on a single thread of a PC having an i5-9600K
CPU, an NVidia RTX 2070 GPU and 16GBs of RAM using PPO with
the parameters shown in Table 2; we use the PPO implementation
found in the ml-agents framework by Unity [Juliani et al. 2018].
Model training took four days. For most experiments we use a sim-
plified cylindrical representation of agents that have separate look
and move directions; movement is on a 2D plane. For visualisations
with humanoid characters we use Motion Matching [Clavet 2016;
Unity 2021] which allows for skeletal animation from unstructured
motion capture data. For visual interpretation of results, we color
code characters based on profile. To quantitatively compare the
simulations in the following paragraphs, we measure the following
statistics for all agents: a) speed, b) density, c) distance to the clos-
est neighbor (DCN), and d) distance to the closest point of interest
(DPOI). Please refer to the supplemented video for animated results.

4.1 Environment setups
We use four simulation environments for this study; hall, museum,
crossing and circular (Fig. 3). The first 3 are associated with the
experiments for behavior sensitivity (Section 4.2) and generaliza-
tion (Section 4.5), while the fourth was developed to demonstrate
the trained model on a large scene with multiple diverse behav-
iors (Section 4.6). The hall and crossing environments consist of
agents walking in 2 and 4 opposing directions, respectively. In the
circular setup, the agents start from the perimeter of a circle and
move towards opposing points. To test interaction and avoidance
behaviors, some obstacles and other POIs were added. The museum
scene consists of 400 agents moving in a museum-like environment
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Figure 3: Simulation Environments.

that has several artefacts; we demonstrate results with different
distributions of behaviors amongst the agents. We note that in Fig. 3
the red boxes indicate POIs and the blue regions indicate where the
profile values are set – we consider statistics only in these regions.

4.2 Weight Sensitivity on Crowd Behavior
The first set of experiments concerns the effect of each of the
weights on the agents’ behavior; goal seeking, collision avoidance,
grouping, and environment interactions (Fig. 4). To assess the im-
pact of each behavior on the outcome of the simulation, we gradu-
ally increase each behavior’s weight in the 3 different environments
– the weights apply to all the agents in the environment. We ran 4
sets of experiments, starting with the bidirectional hall setup with
6 agents, and proceeding with additional three sets of experiments
containing 75 agents in each of the simulation environments;hall,
cross, circular. For all 4 sets of experiments, we set the respective
weight to 0, .33, .67 and 1, while fixing the remaining weights to
.5 throughout the experiments. An overview of the effect of these
weights on the speed, DCN and DPOI for the Hall scenario with 75
agents can be seen in Fig. 5; please refer to the video for animated
results of all the simulations for all scenarios.

Figure 4: Effect of weight changes for the Interaction (Top)
and Grouping (Bottom) Behavior.

Goal Seeking is a basic, important behavior for agents in crowds.
In all scenarios, we find that as𝑤𝑔 increases, so does the average
speed, DCN and DNOI; this indicates that agents prefer to move
rather than group for long or stop at POIs. The deviations from the
mean are explained by the mixture of other behaviors since we set
.5 for all of them (Fig. 5). More specifically, when agents come in
contact with other agents and POIs, they slow down and exhibit
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Figure 5: Weight Sensitivity in the Hall environment. We ex-
amine statistics for Speed, Distance to NN and DPOI. Shaded
areas indicate half a standard deviation from the mean.

mixtures of collision avoidance, grouping and interaction behaviors.
The agents finally reaching their goal depends on their incentive
to do so, which is depicted by the value of 𝑤𝑔 , as anticipated, as
well as the environment conditions (number of interaction areas
and nearby agents). Collision Avoidance is a fundamental crowd
simulation behavior. Our experiments verify that as𝑤𝑐 increases,
agents move faster and keep larger distances to the other agents
and objects. However, since we also set 𝑤𝑔 = 𝑤𝑔𝑟 = .5 we occa-
sionally have grouping and interactions with the environment. The
Grouping experimental results demonstrate that as𝑤𝑔𝑟 increases,
agents get significantly slower as they merge with others to form
groups. Moreover, as expected, the closest distances to neighbors
decrease since agents tend to stay together for prolonged periods of
time. Interestingly, the DPOI also decreases slightly; since we have
𝑤𝑖 = .5, some agents approach and stay next to others for both
reasons. Finally, Interaction with POIs is an interesting behavior,
enabling the development of simulations like crowds in museums
and exhibitions. Similar to the grouping behavior, as𝑤𝑖 increases,
agents move slower, keep short distances to each other (with little
variation) and of course keep short distances to the POIs.

To summarize, we demonstrate in several environments that
even when trained with multiple behaviors at the same time, we can
control the behavior intuitively by manipulating profile parameters
(weights). We also recorded a demonstration of dynamic real-time
control and modification of the profiles in the crossing environment;
the reader is referred to the video for the results.

4.3 Comparison with Power Law and
Real-World Data

We compare CCP against simulation data from Power Law (PL)
[Karamouzas et al. 2014] and real-world data of pedestrians (RW)
[Lerner et al. 2007]. The RW data consist of 25 minutes of 1317
tracked trajectories from a) a medium density bidirectional flow
commercial street (Zara) and b) a dense university scene. We sim-
ulate a total of 2800 trajectories in a bidirectional scenario (Hall)
using different number of concurrently simulated agents (50-350)
using both PL and CPP; both simulators had the same a) agent
radius (𝑟 = .5𝑚), b) update periods (we tested both .2𝑠 and .04𝑠) and
c) neighborhood radius (𝑅𝑠 = 7𝑚). Since PL is a collision avoidance
method, we set 𝑤𝑐𝑎 = 1,𝑤𝑔 = 1,𝑤𝑔𝑟 = 0,𝑤𝑖 = 0 for CCP to be as
close as possible. In total, we have 32 minutes of data for PL and
34 for CCP. We build the fundamental diagram (Fig. 6) for all three
datasets; the local density 𝑑𝑡𝑎 of an agent 𝑎 at time 𝑡 is estimated
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using the equation in Helbing et al. [2007]:

𝑑𝑡𝑎 =
∑︁

𝑖∈𝑁 (𝑎𝑡 )

1
𝜋𝑅2𝑠

𝑒𝑥𝑝 (−||p𝑡𝑖 − p𝑡𝑎 | |2/𝑅2𝑠 ) . (2)

p𝑡𝑎 and 𝑁 (𝑎𝑡 ) are the position and all neighbors of agent 𝑎 at time
𝑡 . In all datasets, speed decreases as density increases; PL and CCP
exhibit on average the same overall behavior. Additionally, the real-
world data are richer in nature as compared to both approaches,
indicating directions for future work and research. We have indica-
tive simulations in the provided video.
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Figure 6: Fundamental Diagram for CCP, Power Law and
Real-World Data.

4.4 Comparison with Baseline RL Model
On the grounds of fair evaluation, we train a baseline RL model only
including goal seeking and collision avoidance. We set the normal-
ized weights of our CCP model accordingly, to correspond to the
baseline simulation (𝑤𝑔 = 1,𝑤𝑐𝑎 = .5); side-by-side visualisations
are shown in the video. Visually, we get similar results, on one side
indicating the need for further exploration of how the behaviors
are mixed and how to optimize the effect of the prominent behavior
(e.g., finding optimal routes to reach the goal) and on the other
hand showing that even with the presence of multiple behaviors a
simple manipulation of weights yields comparable results.

4.5 Stress Testing the model
During the training of the model, the agents were exposed to the
environment, shown in Fig. 2, with no more than 100 agents present
in the simulation at the same time and using only the weight inter-
vals in Table 1. We stress test the trained model; could it generalize
to situations never faced before, like increased number of agents?
Could it extrapolate behavior outside the trained weights intervals?

4.5.1 Density Sensitivity. The first aspect we study is the effect of
increasing the crowd size on each of the trained behaviors. We per-
formed 4 rounds of experiments, one for every behavior having a set
of weights reflecting its effect profoundly. For both environments
(i.e., hall–Fig. 7 and crossing) we find that our system is generaliz-
able to larger crowds (up to 250 agents in our tests). As seen in Fig. 8,
which regards the crossing setup, changes in density affect the goal
and collision avoidance behaviors more intensely. For instance, the
speed of the agents decreases with the increase in density while for
interaction and grouping seem to remain constant, on average; this

Figure 7: Density Sensitivity on the Hall Scenario.
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Figure 8: Density Sensitivity in the Crossing environment.
We examine statistics for Speed, Distance to NN and Distance
to POI. Shaded areas are half a standard dev. from the mean.

is sensible since adding more agents in the same space will cause
them to slow down no matter their profile. However, this effect on
grouping and interaction is more subtle since speed does not help
agents achieve these behaviors better. We observe a similar trend
in Distance to NN, again representative of realistic phenomena
as agents would become more dense as the crowd size increases.
Regarding the DPOI, for interaction it remains roughly the same
since the goal is to be close to such objects, whereas for avoidance
there is a trend for small decrease. For the goal and grouping be-
haviors, there are slight fluctuations but distance remains fairly
constant, which makes sense as these behaviors are unaffected by
their surrounding environmental features.

4.5.2 Weights outside training intervals. The second aspect of the
generalisability experiments considers normalized weights outside
the [0, 1] interval. In Fig. 10 we demonstrate the effect of these
changes on the Crossing Scenario for the DPOI; trends are similar
for the other statistics and scenarios also. For collision avoidance, a
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Figure 9: Museum Exhibition. This scene consists of 400 agents with different behaviors.
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Figure 10: Statistics for ranges of profiles not seen in training.
Shaded areas are half a standard dev. from the mean.

decrease in the respective weight corresponds to smaller distance
to nearest object, indicating the inability of agents to confidently
avoid obstacles. For grouping and interaction, such decrease re-
sults in larger distances whereas for larger behavior weights the
distance remains fairly the same. This reflects the fact that out-
side the training interval the agents are not as close to the desired
objects (weights smaller than 0) or remain close enough (weight
larger than 1). The goal behavior’s distances remain the constant
on average, since such distances do not have an effect on the agents’
goal seeking abilities.

4.6 Museum Exhibition
Following the analysis of the individual aspects of our system and
the extent to which they reflect the intended outcome, we demon-
strate its practicality when designing and authoring realistic scenes;
we showcase one case study, a museum exhibition Fig. 9. The sys-
tem’s capabilities are reflected in a) designing a large, complex
environment with abstract layout, multiple obstacles and interac-
tion areas (walls, exhibits), b) creating custom profiles for museum
visitors by mixing the trained behaviors, and c) controlling the
effects of each constructed profile to the crowd (i.e., 70% of agents
having dominant interaction behavior).

5 DISCUSSIONS AND FUTUREWORK
We present CCP, a learning-based framework that allows for the
simulation of diverse crowd behaviors using a single policy net-
work. Our system is useful for creating heterogeneous crowds with
agents exhibiting a mixture of simpler (e.g., collision avoidance,
goal seeking) and more sophisticated behaviors (e.g., grouping, in-
teraction with environmental objects) according to users’ desires.
We implement a RL-based training method, able of successfully

learning multiple behaviors concurrently. We demonstrate the sys-
tem’s effectiveness in a complex, realistic scenario of a museum
exhibition.

Our novelty lies in the development of learned configurable agents
which allow for different profiles, thus enabling users to assign be-
haviors and have intuitive control over them. This introduces a high
degree of heterogeneity, even in a single simulation, which is con-
trollable by users via mixing the trained behaviors; this is arbitrary
and reflects different profiles; agents appear friendly, aggressive,
curious etc. The generalizable qualities of our approach, both in
terms of crowd size and environmental layout, further solidify our
system as an efficient and practical authoring tool. Our framework
also manages to extend the effect of agents’ profiles beyond the
training interval, intensifying or damping their effects accordingly.

Despite the fact that our method responds well to the training
scenarios, the lack of a wide variety of such scenarios during train-
ing strain its impact. Moreover, the amount of distinct behaviors we
used for training is limited; even though, in principle, incorporating
additional behaviors would be straightforward and effective.

There are a lot of promising directions for future work stemming
from this study. One interesting area we would like to investigate
is how our simulated results can correlate and integrate with real-
world data as well as the extent to which these correlations can
be examined and deciphered. Additionally, we aim to further en-
rich the training process by more carefully exploring the reward
function, action space, and observations. This entails a number of
aspects; non-linear or DL-based reward functions instead of the lin-
ear combination of the individual rewards, different or more degrees
of freedom of the individuals, and the addition of more complex
features in the observations. Alternatively, in the context of char-
acter animation, it would be interesting to explore the concept of
our configurable agents for style control. These tactics will either
help in testing our system from different standpoints, or enhance
its abilities making it more concrete, realistic and impactful.
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