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Simulating crowds with realistic behaviors is a difficult but very important
task for a variety of applications. Quantifying how a person balances be-
tween different conflicting criteria such as goal seeking, collision avoidance
and moving within a group is not intuitive, especially if we consider that
behaviors differ largely between people. Inspired by recent advances in
Deep Reinforcement Learning, we propose Guided REinforcement Learning
(GREIL) Crowds, a method that learns a model for pedestrian behaviors
which is guided by reference crowd data. The model successfully captures
behaviors such as goal seeking, being part of consistent groups without
the need to define explicit relationships and wandering around seemingly
without a specific purpose. Two fundamental concepts are important in
achieving these results: (a) the per agent state representation and (b) the
reward function. The agent state is a temporal representation of the situation
around each agent. The reward function is based on the idea that people try
to move in situations/states in which they feel comfortable in. Therefore,
in order for agents to stay in a comfortable state space, we first obtain a
distribution of states extracted from real crowd data; then we evaluate states
based on how much of an outlier they are compared to such a distribution.
We demonstrate that our system can capture and simulate many complex
and subtle crowd interactions in varied scenarios. Additionally, the proposed
method generalizes to unseen situations, generates consistent behaviors and
does not suffer from the limitations of other data-driven and reinforcement
learning approaches.
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1 INTRODUCTION
Crowds are an important part of our daily lives; we interact with
them in streets, workplaces, shopping malls, football stadiums or
concerts. Therefore, one important element in the compositing of
lively and believable virtual scenes in applications such as games and
movies is the presence of realistic ambient crowds. The dynamics
of crowd motion greatly affect the ambiance, and are thus a crucial
element of computer generated environments used in computer
games, movies, training and architectural visualizations. As these
applications continue to strive towards higher levels of realism and
scene complexity, there is an increasing need for more believable
crowd simulations.
Research in microscopic crowd modelling has focused on find-

ing the main principles by which a person moves within a crowd,
and on progressively removing simulation artefacts, such as dead-
locks or jerky trajectories leading to easily noticeable animation
imperfections. A side effect of their success, is that most recent simu-
lation algorithms tend to generate an overly fluid look and feel with
characters exhibiting perfect collision avoidance and goal seeking.
However, real people in crowds exhibit more complex trajectories.
For example, in streets, people move in groups, they may suddenly
change direction, show hesitation, or generate accidental bumps.
Simulation algorithms clearly loose these details which do not result
from collision avoidance or goal-reaching tasks.

It would be an endless goal to model and simulate all these little
causes for recovering trajectory details. One solution is to follow
a data-driven approach. Data-driven techniques can capture the
variety and detail of human trajectories without the need to explain
their cause, by looking at a data-base of real-world examples. Dif-
ferent types of crowds can be simulated by simply using different
sets of input examples. However, existing solutions show a num-
ber of limitations: they can only simulate situations that are found
in the original data; they need a considerable amount of training
input causing a heavy overhead in some cases; and since they do
not take into account history and future consequences the overall
trajectories tend to exhibit inconsistencies. Importantly, differences
between simulated and original data are bound to happen; these
lead to errors in prediction. In an environment with multiple agents,
these errors accumulate over time resulting in trajectories with large
deviations from the intended.
In this article we propose a novel data-driven crowd approach

based on a well known Deep Reinforcement Algorithm (Double
Deep Q-learning) [van Hasselt et al. 2016] that addresses several
of the previously mentioned issues. It leverages the ability of rein-
forcement learning to learn good policies for sequential decision
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problems, by optimizing a cumulative reward function, in our case
for learning more consistent trajectories. This is done in a two-stage
framework; first a novelty detection algorithm is used to learn a
reward function from input crowd, which is then used during train-
ing to find an optimal policy for individual agents in the crowd.
During the learning process, new example data are generated that
enrich the policy and enable it to handle situations not present in the
original data, something lacking in previous data-driven methods
that rely on supervision. The main contributions are:

• A complete learning framework that can reproduce plausible
and consistent crowd behaviours from a relatively small set
of input crowd data.

• A data-driven novelty detection based reward function that
takes into account the plausibility of a given state.

In Section 2 we give an overview of previous work, we then
give an overview of the GREIL framework (Section 3), followed
by a detailed description of the methods and learning approach
(Section 4), we demonstrate results (Section 5) and finish with some
discussion about the method, limitations and future work (Section 6).

2 RELATED WORK
There are many crowd simulation techniques that can broadly be
categorized as macroscopic or microscopic. In the macroscopic ap-
proach, crowds are modelled as an active matter, for which variation
of density in space and time is computed, with no distinction of
individuals. They generally fail to simulate variety in motion and
behaviours. In this work we focus on microscopic approaches - and
more specifically data-driven methods which are the most relevant
to our work. We refer the reader to [Pelechano et al. 2016] for a
more comprehensive discussion on crowd simulation techniques.

Data-Driven Crowds. Recently, data-driven crowd simulationmeth-
ods have emerged as an attractive alternative to manually defining
the crowd simulation model. The promise in these approaches is
that agents will “learn” how to behave from real-world examples,
keeping the natural crowd ambiance with a wide range of com-
plex individual behaviours without the effort of defining an explicit
behavioural model. One of the earliest data-driven techniques for
groups of characters employed a motion graph approach for syn-
thesizing group behaviour [Lai et al. 2005]. In order to be able to
build a tractable motion graph, this method makes the assumption
that the input follows a well-defined behaviour model, such as a
flocking system with a restricted configuration space. Graph based
simulation was also employed by Kwon et al. [Kwon et al. 2008]
for guiding a single group of agents to navigate together. These
methods are impractical for general human pedestrian crowds due
to the high degree of behaviour variation.

In several data-driven methods, trajectories extracted from videos
of crowds are stored in databases alongside some representation of
the local state as an indication of (state, action) response [Lee et al.
2007; Lerner et al. 2007, 2010; Zhao et al. 2017]. During simulation,
agents match simulated states to the ones stored in the database and
act accordingly. Charalambous and Chrysanthou [Charalambous
and Chrysanthou 2014] introduced the Temporal Perception Pattern
(TPP) to represent agent state and the Perception-Action-Graph

(PAG) to do simulation and improve upon the performance of data-
driven crowd simulations. Ju et al. [Ju et al. 2010] take a different
approach; input data that represent different styles of crowds are
blended together to generate new crowd animations. Metoyer and
Hodgins [Metoyer and Hodgins 2003] allow the user to define spe-
cific examples of behaviours, while Musse et al. [Musse et al. 2006]
extract paths from a video for a specific environment. All of these
methods are in essence supervised learning approaches, and there-
fore they are highly dependent on the amount and variability of the
training data; i.e., they do not generalize well to unseen states. Even
small differences between observed and input data states give errors
in agent reactions; these errors accumulate over time resulting in
undesirable behaviours. Additionally, most of these approaches are
greedy; agents react to the current state observation without taking
into account long term consequences of their actions.
As an alternative to storing example behaviours in databases,

some techniques use observations of real people to learn parameter
values for simulators. Several works for example estimate collision
avoidance and anticipation parameters by examining motion cap-
ture data in a controlled environment and propose prediction based
approaches for crowd steering [Paris et al. 2007; Pettré et al. 2009;
van Basten et al. 2009]. Moussaïd et al. [Moussaïd et al. 2010] used
data from videos of real crowds to modify Helbing’s social forces
model [Helbing and Molnár 1995] to handle group formations in a
more realistic way. In the work of Courty and Corpetti [Courty and
Corpetti 2007] a macroscopic approach is followed; the crowd is
seen as a continuous flow and the captured data is used to define the
guiding vector field. Li et al. [Li et al. 2012] follow a procedural ap-
proach where periodic motion patches of crowds are concatenated
together to create large crowd animations. Looking a bit further
away, biology researchers proposed using input from stereoscopic
videos of Starling birds to estimate a statistical model of their mas-
sive and complex flocking behaviour [Hildenbrandt et al. 2010]. In
all of these techniques, the examples are used to refine an underlying
behaviour model therefore they are still bound by the limitations of
the underlying model.
A recent class of systems predict trajectories for each individual

agent in a simulation instead of instantaneous actions like velocity or
acceleration. Early works in this area retrieve sub-trajectories from
databases of real-world data[Lerner et al. 2007]. More recent work
take advantage of Deep Learning techniques such as LSTMs[Alahi
et al. 2016] or GANs[Amirian et al. 2019; Gupta et al. 2018] that
were trained on real world trajectories to generate local trajectory
responses of agents. Other methods use variational autoencoders
[Mangalam et al. 2021; Salzmann et al. 2020]. Contrary to these
methods we do not generate local trajectories and we do not utilize
generative networks to generate the actions of the agents.
Several researchers proposed data-driven methods to analyse

simulated crowds. Some of these methods rank the capability of
simulators to capture some behaviour by comparing simulated states
to the ones found in reference data [Charalambous et al. 2014; Guy
et al. 2012; Kapadia et al. 2011; Wang et al. 2017]. Wolinski et al.
[Wolinski et al. 2014] propose a genetic algorithm approach to find
the set of optimal parameters that a simulator must use to get desired
crowd behaviour based on somemetrics; this in turn allows for fairer
comparison between simulation systems. Getting inspiration from
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Fig. 1. Overview of GREIL-Crowds. (top) At the pre-processing stage, spatio-temporal trajectories of real world crowds are extracted from videos. These are then
processed to find agent centric states and actions, and to define a data-driven reward function 𝑅 (𝑠, 𝑎, 𝑠′ ) . (bottom) During training, 𝑅 (𝑠, 𝑎, 𝑠′ ) is used by the
Double Deep Q-Learning algorithm to find the optimal policy function for the agents. A replay buffer memory combined with a data-driven training strategy
are crucial elements in achieving efficient policies.

these approaches, we define a novel reward function that evaluates
simulated behaviour as compared to reference data using novelty
detection [Charalambous et al. 2014]; we therefore integrate crowd
evaluation in the training loop.

Reinforcement Learning (RL) (or Optimal Control). RL is a learn-
ing framework that is used to find optimal strategies in sequen-
tial decision-making problems [Sutton and Barto 2018]. Mnih et al.
[Mnih et al. 2015] introduced the Deep Q-Learning (DQN) frame-
work that allowed agents to learn and play Atari games at human
level. Later, van Hasselt et al. [van Hasselt et al. 2016] improved
learning and stability of that system by introducing Double Deep
Q-Learning (DDQ). The work on DQN inspired many system de-
signs to handle complex control problems; of particular relevance
to this paper are works from the computer animation community
[Liu and Hodgins 2017; Peng et al. 2018, 2017; Treuille et al. 2007].
Treuille et al. [Treuille et al. 2007] and Peng et al. [Peng et al. 2017]
for example demonstrate characters that navigate environments
and avoid collisions with moving obstacles. Several authors pro-
posed RL approaches to learn crowd simulation policies [Godoy
et al. 2015; Henry et al. 2010; Lee et al. 2018; Martinez-Gil et al. 2011];
Long et al. [Long et al. 2018] for example introduced a multi-agent
deep reinforcement learning approach to learn optimal policies for
robot navigation. Many of these RL systems for crowds make sim-
plifying assumptions or use very simple manually defined reward
functions that aim to capture specific aspects of crowds such as
collision avoidance and goal reaching [Lee et al. 2018; Long et al.
2018]; this results in agents with highly efficient movement that
do not resemble actual crowds. Recently, Hu et al. [Hu et al. 2021]
introduced the use of control parameters such as preferred speed as
input to the policy to generate heterogeneous behaviours for crowd
simulations. Panayiotou et al. [Panayiotou et al. 2022] introduced
Configurable Crowd Profiles (CCP), an RL based method where the
weights of different components of the reward function are added in

the inputs to the policy; this allows the learning of a single policy for
heterogeneous agent behaviours that mix several basic behaviours.
Additionally, this approach allows for run-time control of agent
parameters without the need of retraining the learned models. Our
aim is to capture many behaviours that are present in the reference
crowd data and therefore define a reward function that is based on
actual crowd data. We get inspiration for the design of our Deep
Q-Learning framework from the works by Mnih et al. [Mnih et al.
2015] and van Hasselt et al. [van Hasselt et al. 2016].
The proposed system is different in many ways to other data-

driven methods. Firstly, it has better generalization properties, does
not suffer from the problems of supervised learning agents and is
less bound by the amount of data. Secondly, an optimal policy for
sequential decision-making is found and therefore agents take into
account consequences of actions that they took many learning steps
before whereas most of the other approaches are reactive or opti-
mize at a very short time horizon. Additionally, our approach has
high run-time performance and is memory efficient since during
simulation time only the trained network is needed; forward passes
through the network return actions and training data can be dis-
carded. Performance is improved significantly since we also utilize
a large timestep between decisions. Moreover, we use novelty detec-
tion on actual crowd data as the basis of our reward function; agents
tend to move in areas of the state space that are more beneficial for
them. Finally, the proposed system captures many behaviours that
are present in actual crowds which make them feel more natural
such as social interactions, collision avoidance, sudden changes in
direction, slight bumping, etc.; in contrast to other systems which
optimize a particular aspect of the crowd.

3 SYSTEM OVERVIEW
The goal of this work is to create control policies able to simulate re-
alistic looking ambient crowds using as reference real-world crowds
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for applications in domains such as video games, movies and archi-
tectural visualizations. Our system is split in two distinct phases:
pre-processing where a data-driven reward function is computed
and training where the optimal policy is estimated (Fig. 1). In order
to achieve good crowd simulation performance, numerous issues
had to be considered. The biggest issue is defining a proper reward
function; in environments like the Atari games [Mnih et al. 2015]
for example, a reward can easily be determined by the game’s score.
However, crowd simulation is a multiagent interaction problem by
nature; this implies that a proper reward function should consider
multiple criteria such as satisfying desired velocities, avoiding colli-
sions, and moving with other agents in groups (e.g, families, tourists,
etc.).

Pre-processing. Given some reference crowd data such as tracked
data of people from a street or a controlled environment [Ju et al.
2010; Lerner et al. 2007] (Section 4.1) we extract the state/action
spaces and the reward function. States include both intrinsic and
extrinsic features that could affect a person’s behaviour such as the
agents current velocity, desired velocity and positions/velocities
of neighbouring agents (Section 4.2). The action space consists
of all possible acceleration vectors in the local coordinate system
of agents; these accelerations are applied continuously between
decision-making steps (Section 4.3). We construct a scalar reward
function that is based on novelty detection; this function evaluates
a state based on how much of an inlier it is as compared to the
reference data (Section 4.4). The key intuition behind the selection
of such a reward function is that when people move, they tend to
stay in parts of the state space that they feel comfortable in, giving
preference to more common states than abnormal ones; however,
abnormal states are also acceptable with a low reward since these
are normal behaviours that are not visited often, but are present in
the example data.

Training. During training, the DDQ algorithm [van Hasselt et al.
2016] is adapted to find an optimal policy 𝜋∗ that maps an individual
agent’s state to an action (see Section 4.6). The policy function is a
4-layer fully connected neural network (a Q-Network) that computes
the cumulative reward the agent is expected to receive at any given
state (Section 4.5) for all possible actions; during simulation an agent
simply selects the actionwith the highest expected reward. TheDDQ
algorithm trains two such networks to stabilize training and allow
for agents to learn more complex tasks. Our novel learning strategy
involves the simulation of agents in an environment consisting of
the original tracked crowd data; this generates experiences (states)
that are close to the original data (Section 4.6). We additionally allow
for exploration to improve the quality of the policy.
The following section provides a detailed description of our

methodology and how we approached these issues.

4 LEARNING AGENT BASED CROWD BEHAVIOR
In the Reinforcement Learning setting, an agent interacts with an
environment over a sequence of episodes trying to maximize a cu-
mulative reward. We formulate the navigation task of an individual
agent through a crowd as a Markov Decision Process (MDP) which
is represented by the tuple (𝑆,𝐴, 𝑅,𝑇 ,𝛾, 𝜌) where 𝑆 is the continuous

state space,𝐴 is a discrete set of actions, 𝑅 is a scalar reward function,
𝑇 is the transition model, 𝛾 ∈ [0, 1] is a discount factor and 𝜌 is the
initial state distribution.
A state 𝑠 ∈ 𝑆 in our agent based simulation system consists of

intrinsic and extrinsic factors that influence the navigation behavior
of an agent; e.g., the agent’s velocity and goal and neighborhood
formation (Section 4.2). An action 𝑎 ∈ 𝐴 is a 2𝐷 acceleration vector
with respect to the local coordinate system of an agent; instead
of having a continuous action space we sample the distribution of
acceleration values from some reference crowd data to get a discrete
set of actions (Section 4.3). The transition function 𝑇 : (𝑠, 𝑎) ↦→ 𝑠′

describes the probability we transition to state 𝑠′ ∈ 𝑆 given that
we executed action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 . A reward function 𝑅 :
𝑆 × 𝐴 × 𝑆 ↦→ R (for convenience 𝑟 := 𝑅(𝑠, 𝑎, 𝑠′)) evaluates the
transition (𝑠, 𝑎, 𝑠′) given the agent task; in our case the task is to
behave similarly to reference crowd data (Section 4.4).
A policy 𝜋 : 𝑆 → 𝐴 defines a direct mapping from continuous

states to discrete actions. We note that in the more general case,
continuous state and action spaces could be used. This would require
other approaches to solve the problem such as policy gradient or
Actor-Critic methods. Since we employ Q-Learning and our action
space is low dimensional (|𝐴| = 2), we do a discrete approximation
of 𝐴. An agent applies actions from the policy 𝜋 continuously;
these leads to sequences of (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) tuples where 𝑎𝑡 = 𝜋 (𝑠𝑡 ),
𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and 𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡 ). Any given state 𝑠 ∈ 𝑆 can
be evaluated using the value function 𝑉𝜋 (𝑠) =

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 over the
entire trajectory seen after this state. The discount factor 𝛾 gives
less weight to future states, keeps the value function bounded and
implicitly defines a finite time horizon. For the experiments shown
in this work we set 𝛾 = .9. The goal of Reinforcement Learning is to
find the optimal policy 𝜋∗. Q-Learning is one of the most popular
model-free approaches to find 𝜋∗ [Sutton and Barto 2018; Watkins
and Dayan 1992]. The goal in this formulation is to learn a Q-value
function 𝑄𝜋 (𝑠, 𝑎) = 𝑟 + 𝛾𝑉 𝜋 (𝑠′) that gives the expected reward
assuming an agent takes action 𝑎 = 𝜋 (𝑠). The optimal Q-value
function 𝑄∗ (𝑠, 𝑎) satisfies the Bellman equation:

𝑄∗ (𝑠, 𝑎) = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄
∗ (𝑠′, 𝑎′). (1)

Having calculated 𝑄∗ (𝑠, 𝑎), the optimal policy at any given state
𝑠 is:

𝜋∗ (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄
∗ (𝑠, 𝑎) . (2)

Since the state space 𝑆 is continuous, the Q-value function is
approximated by a function approximator; typically a neural net-
work (i.e., Q-Network). The goal of Q-Learning therefore is to learn
the optimal parameters 𝜃 (weights and biases) of the neural net-
work 𝑄̃ (𝑠, 𝑎;𝜃 ) ≈ 𝑄 (𝑠, 𝑎) and the approximate optimal policy is
𝜋∗ (𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄̃

∗ (𝑠, 𝑎;𝜃 ).
In the following paragraphs, we give more detailed descriptions

of states, actions our data-driven reward function, a description of
the policy network and our modifications to the DDQ algorithm
[van Hasselt et al. 2016].
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4.1 Crowd Data
We consider a person’s trajectory in a video of real world crowds as
a near optimal expert demonstration of an individual’s behaviour in
a crowd. These tracked data consist of a set {𝑇𝑖 } of spatio-temporal
trajectories of individual people 𝑇𝑖 = {p𝑡,𝑖 }; each 2𝐷 point p𝑡,𝑖 is a
projection of the Center of Mass (CoM) of each individual on the
ground. We can then pre-process {𝑇𝑖 } to extract sequences of agent-
centric states and actions (Sections 4.2 and 4.3) to generate the set
D : {𝜏𝑖 } ∼ 𝜋∗ where 𝜏𝑖 = {𝑠1, 𝑎1, . . . , 𝑠𝑡 , 𝑎𝑡 , . . . , 𝑠𝑇 }; these data can
be considered as sample demonstrations of the optimal policy 𝜋∗ of
the agents in the crowd. These data are then used to extract state
and action distributions, a reward function and sequences of actions
(Sections 4.2 and 4.6).

4.2 Agent State
All characters in the crowd are represented as 2𝐷 circular agents;
we set their radius 𝑟 = .3𝑚 for all experiments in this paper. At
any given moment, an agent collects partial observations of the
environment {𝑂𝑖 } w.r.t. its local coordinate system (LCS). Then, at
any given time 𝑡 , these are used to update the belief of the agent
about the state 𝑠𝑡 of the environment; i.e., 𝑠𝑡 = 𝑓 ({𝑂𝑖 : 𝑖 ≤ 𝑡}).
Observations contain a) the positions and velocities of the agent
and its neighbours (we set a maximum search distance of 𝑅𝑠 = 5𝑚)
and b) the agent’s goal position p𝑔 ∈ R2.

Fig. 2. Agent State. The agent state consists of the distances of the nearest
neighbours in each of 11 arcs around the agent (we show 8 for clarity) and
their relative velocities to the agent; i.e., grey agents are not considered. The
radial region is aligned to the current velocity of the agent; when the agent
is not moving, this is aligned to the desired velocity; this defines the local
coordinate system of the agent.

We designed a state feature vector that aims to capture various
behaviours such as grouping, goal seeking and collision avoidance.
First, we define an LCS that is aligned to the current velocity v of
an agent; when an agent is not moving, we define the LCS w.r.t. the
desired velocity v𝑑 . The state 𝑠 ∈ 𝑆 ∈ R36 of an agent is the union
𝑠 = 𝑠𝑎 ∪ 𝑠𝑔 ∪ 𝑠𝑛 of all relevant information (Fig. 2). 𝑠𝑎 = {|v|} ∈ R
is the internal state of the agent and contains the magnitude of the
current velocity. 𝑠𝑔 = {v − vd} ∈ R2 is the relative velocity of the
agent as compared to its desired velocity. 𝑠𝑛 = {(𝑑𝑖 , v𝑖 −v)} ∈ R33 is
the neighbourhood information and contains distances and relative
velocities of closest neighbours in predefined arcs; a representation

inspired by Lee et al. [Lee et al. 2007] was chosen. We tested various
configurations (8-32 arcs) and found that 11 arcs gave good policies
in short training time; we find the closest neighbour in each arc.
Besides the difference in the number of arcs (11 instead of 8), the
main differences are that a) both distances and differences in average
velocity (past 1𝑠) from the closest agent are stored in each arc and
b) the neighbourhood radius 𝑅𝑠 is much larger (5𝑚 instead of 1𝑚);
this helps agents to anticipate the movement of other agents. In
arcs without any agents present, the closest distance is set to 𝑅𝑠 and
the velocity difference to v0 = (0, 0). This results in a state space
𝑆 ∈ R36. We expect that the training algorithm will learn which
features of the state are important and when; e.g., closer agents will
be more important in dense situations or nearby agents that are
moving with similar velocities might affect reactions to potential
groups.
We note that all features are scaled to have zero mean and unit

variance given the reference data; the scaling parameters are stored
and later used during training and simulation for all the new states
that are generated on the fly. Following recent work for planning
control fragments of physically based characters [Liu and Hodgins
2017], we additionally record the index of the last action to help
exploration during training (Section 4.3); this index is not part of
the input to the policy network.

4.3 Actions
We define agent actions to be acceleration vectors {a𝑖 } ∈ R2 parallel
to the ground w.r.t. the LCS of the agent; an acceleration (including
a0 = (0, 0)) is always applied on each agent at each update step.
Instead of manually defining the actions, these are sampled from the
distribution of acceleration values of the source data (Fig. 3). To cal-
culate these values from the reference data, we find the acceleration
a𝑡 of any given person at any given timestep 𝑡 ; we estimate values
over .5𝑠 length windows. We then use Kernel Density Estimation
(KDE) in a grid of 100 * 100 values over the extent of the values
on each axis to estimate the PDF of the actions. We subsequently
sample 50 values out of the KDE; these are the actions to be used
by each agent.

To accelerate learning, we go through all the action trajectories of
the data and find all possible sequences of actions (Fig. 3b). In many
of the datasets, we found that people tend to apply the same action
for many consecutive timesteps; moreover, even when switching
between actions, these were very similar (i.e., people tend to tran-
sition smoothly between nearby actions). We use these sequences
during exploration in the DDQ algorithm to improve performance,
similarly to the approach by Liu and Hodgins [Liu and Hodgins
2017].

4.4 Data-Driven Reward Function
A reward function 𝑅 : 𝑆 ×𝐴 × 𝑆 ↦→ R defines the agent task in the
RL domain. In the case of crowds, manually defining the reward
function is a difficult task, people take into account many – often
conflicting – factors at the same time such as moving towards a
goal, avoiding collisions and staying with nearby friends/family.
The problem is enhanced when we consider the fact that to get real-
istic ambient crowd behaviour we are interested in also capturing
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(a) Action Space (b) Action Sequences

Fig. 3. Actions. (a) To get a discrete set of actions 𝐴, we sample the dis-
tributions of acceleration vectors from the input data ( |𝐴 | = 50 for the
experiments in this work). (b) This histogram shows how humans in the
Pedestrian dataset switched between two consecutive actions; the diago-
nality of the graph indicates that people prefer to keep the same action for
several consecutive timesteps.

subtleties or even unpredictable behaviour that are not typically sim-
ulated by many crowd simulation systems, such as people suddenly
standing still, changing directions without any obvious reasons and
even bumping slightly onto each other.

Therefore, instead of manually defining a reward function 𝑅, we
propose to extract an implicit representation from the crowd data.
We propose to use novelty detection to characterize how much of
an inlier an agent state is. The intuition behind this approach is
that people tend to move in parts of the state space 𝑆 that they
feel comfortable in; sometimes people tend to prefer very inlier
situations (e.g., move straight) while some other times they prefer
rare situations (e.g., stop and answer the phone). Therefore, the
reward function 𝑅 should handle all of these cases appropriately
while at the same time aim in satisfying the distributions of rewards
in the input data; this will ensure that many behaviours appear and
the overall feel of the simulation is similar to the input data. We base
the design of 𝑅 on a distance based novelty detection algorithm.

4.4.1 Novelty detection with 𝑘-LPE. We choose to use Localized
p-value estimation (𝑘-LPE) proposed by [Zhao and Saligrama 2009]
as the basis of the novelty detection algorithm; this algorithm is
based on the construction of the k-Nearest Neighbour Graph of the
data (𝑘NNG) and does not require tuning complicated parameters
or defining function approximation classes and can adapt to local
structure [Zhao and Saligrama 2009]. Each point s𝑖 on the graph
(of the states in our case), is assigned a score value 𝑅𝑆 (s𝑖 ) ∈ [0, 1]
based on the distances to its 𝑘-nearest neighbors. Assuming the
𝑘-nearest neighbors of s𝑖 is the ordered list of points 𝑘𝑁𝑁 (s𝑖 ) =
{s𝑖1, s𝑖2, . . . , s𝑖𝑘 }, the score for each point is then defined as the
distance to the farthest nearest neighbor s𝑖𝑘 :

𝑅𝑆 (s𝑖 ) = 𝑑 (s𝑖 , s𝑖𝑘 ) (3)

We experimented with various distance functions (e.g., Euclidean,
Mahalanobis and Manhattan) and found that in most cases they
performed the same. For all the experiments demonstrated in this
work we use the euclidean distance. Given a new test point (i.e.,
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Fig. 4. Reward Function. (top) The reward function construction for the
flocking dataset. We find the inlier score of each input state 𝑠 ∈ 𝑆 using
𝑘-LPE; this always distributes scores uniformly in the [0, 1] range. We define
the reward function to be the cumulative histogram of the inlier data; this
gives a score that is directly proportional to the 𝑘-LPE score. (bottom) t-SNE
projection of the states in the flocking dataset; warm colours indicate high
rewards.

in this work from training), an anomaly score 𝑝𝐾 (s𝑡 ) is estimated
based on the following formula [Zhao and Saligrama 2009]:

𝑝𝐾 (s𝑡 ) =
1
𝑛

𝑛∑︁
𝑖=1
I{𝑅𝑆 (s𝑡 )≤𝑅𝑆 (s𝑖 ) } (4)

where I{ .} is the indicator function, i.e., it returns 1 if the condition
is valid and 0 otherwise; this maps the data in a uniform distribution
over the interval [0, 1] with 0 indicating complete inliers and 1
extreme outliers (Fig. 4). Intuitively, Equation 4 can be thought of
as indicating what portion of existing points on the 𝑘NNG of the
training data have worse score than the testing point. Or more
simply, how much of the training data is more anomalous than a
given piece of testing data.

4.4.2 Reward function. To construct the reward function , we first
find the inlier scores I = {1 − 𝑝𝐾 (𝑠) : ∀𝑠 ∈ 𝑆} of all states in the
input data and construct their Cumulative Density Function (CDF):
𝑃I (I ≤ 1 − 𝑝𝐾 (𝑠)). Since inlier scores are uniformly distributed in
[0, 1], the CDF is linear (Fig. 4). We then set the reward function to:

𝑅(𝑠, 𝑎, 𝑠′) = 𝑃 (I ≤ 1 − 𝑝𝐾 (𝑠′)), (5)

i.e., when evaluating a transition (𝑠, 𝑎, 𝑠′) only the landing state
𝑠′ is considered. Intuitively, this choice of a reward function helps
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(State, Action, Next State, Done)

(State, Action, Next State, Done)

…

(State, Action, Next State, Done)

Target Network

Action Network

Minibatches

Q(s, a1)

Q(s, a2)

Q(s, a3)

…

Q(s, a|A|)

Fig. 5. The Q-Networks. The Q-Network is used at each simulation step of
both training and simulation. During training, minibatches of experiences
are use to train the network. The output𝑄 (𝑠, 𝑎) is the expected cumulative
reward for each possible action; the action with the highest reward is se-
lected and applied on the agent.

agents to visit both rare and common states proportionally to the
probability they were generated by the source state distribution.
Additionally, all possible states 𝑠 ∈ 𝑆 get rewards in the [0, 1] range;
this helps in being able to capture abnormal behaviors in our simu-
lations that would not be easy to do with a manually defined reward
function.

4.5 The Q-Network
We use a relatively small fully connected feed forward Neural
Network (NN) to represent the parameterized Q-value function
𝑄̃ (𝑠, 𝑎;𝜃 ) ≈ 𝑄 (𝑠, 𝑎) (Fig. 5); the parameters vector 𝜃 consist of all
the weights and biases of the NN. The input of 𝑄̃ (𝑠, 𝑎;𝜃 ) is a vector
𝑠 ∈ R |𝑆 | that represents the current agent state (|𝑆 | = 36 in all exper-
iments) and outputs a vector of dimensionality |𝐴|; i.e., it outputs
[𝑄 (𝑠, 𝑎) : ∀𝑎 ∈ 𝐴] given a state 𝑠 ∈ 𝑆 . This choice was inspired by
Mnih et al. [Mnih et al. 2015] and allows to retrieve the 𝑄-value for
all actions at the same time for any given state; the selected action
is the one with the highest 𝑄-value. The network has four fully
connected hidden layers; the first two consist of 128 nodes each and
the other two of 64. All of them have a sigmoid activation function
- we also experimented with ReLU activations which had almost
identical performance.

4.6 Learning Algorithm
We build upon the work of van Hasselt et al. [van Hasselt et al.
2016] and employ the DDQ algorithm. To improve performance and
stability we a) use an experience replay memory and b) maintain
two Q-networks. The experience replay memory 𝑀 is a finite queue
(Table 1) of experiences that is used to break correlations between
consecutive observations in samples observed in training sequences.
During training, experiences (𝑠, 𝑎, 𝑠′, 𝑟 , 𝑑𝑜𝑛𝑒) are stored in 𝑀 and
then minibatches of experiences are sampled from𝑀 to do the Q-
updates; we use the Adam optimizer for these updates. The 𝑑𝑜𝑛𝑒
variable indicates if the agent reached a terminal state. We set a
learning rate of 1𝑒 − 5 at the beginning of training, and half it every
10000 episodes of training.

4.7 Learning strategy
We initially considered initializing several agents in an environment
and letting them learn optimal strategies to replicate the behaviours
in reference data. However, this is not a good strategy; running
a complete multi-agent simulation with all agents initially acting
completely randomly is wasteful and might not lead to good policies.
Instead, we take a more guided strategy where we use the reference
data as part of the training environment; we cut segments of the
reference data (i.e., trajectories in a range), we select randomly one
of these trajectories to initialize a simulated agent and we let the rest
to follow their original trajectories (i.e., these are playback agents).
For the simulated agent, we set starting and end positions, intended
speed and initial velocities using three choices; a) we leave the
reference data values, b) we jitter them using Gaussian noise or c)
we select random values in acceptable ranges. During training, the
simulated agent takes actions in one of the following ways; a) by
following the currently learned policy, b) by choosing a completely
random action or c) by selecting an action based on the statistics
of the action sequences from the reference data (see Fig. 3). The
playback agents simply follow reference trajectories. After each
simulation step, experiences are stored in the experience replay
memory and minibatches of 64 experiences are sampled to update
the Q-networks. A list of all the hyperparameters and the values we
used for this work can be seen Table 1.

Table 1. Default values for hyperparameters.

Parameter Value Description
𝑟 .3𝑚 Agent Radius
𝑅𝑠 5𝑚 Maximum search distance for neighbours
𝐻 10𝑠 Maximum time for agent training
𝛾 .90 Discount factor
𝑀 64000 Experience replay memory size
𝑀𝑚𝑖𝑛 6400 Minimum experiences before training starts
𝐸𝑒 1000 Episodes of that 𝐸𝑒 is linearly changed
𝑒𝑟 1.0 − .1 Random exploration linearly changed in 𝐸𝑒
𝑒𝑔 .4 Guided exploration
batch size 64 Number of experiences used per update
𝑘 100 Number of nearest neighbours used by 𝑘-LPE
freq 5𝐻𝑧 Agent update frequency (training+simulation)
𝛼 1𝑒−4 Initial learning rate
𝛼𝑒 10000 Episode period to drop 𝛼
𝛼𝑑 .5 Drop factor of 𝛼 every 𝛼𝑒

5 RESULTS
The training system was implemented in Python using the Keras
Deep Learning framework. The simulation timestep was set to .04𝑠
(i.e., 25𝐻𝑧 which matches the frame rate of most of the input crowd
videos). Each individual agent takes a decision every .2𝑠; for all
in-between timesteps the agent follows the action that was returned
by the policy and collects observations to update its belief for the
state. Agents are split into 5 subsets; decision-making is interleaved
between simulation steps and agents in the same set take decisions
in a random order; i.e., 1/5 of the agents takes decisions per timestep.
During training, we periodically export the Q-networks and various
statistics to check for convergence. For all the demonstrated cases,
simulation was faster than real-time; agents simply collect state
information and query the Q-network to get acceleration values to
apply.
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(a) Chat (b) Flock-1 (c) Flock-2 (d) Pedestrians

Fig. 6. Crowd Data. We used several datasets to demonstrate that our
method can capture a variety of behaviours. (a) (b) Chat and Flock-1 are
from Ju et al. [Ju et al. 2010], (c) Flock-2 from Charalambous et al. [Char-
alambous et al. 2014] and (d) Pedestrians from Lerner et al. [Lerner et al.
2007].

To evaluate our approach, we train a set of different policies us-
ing different crowd datasets. We quantitatively evaluate GREIL by
measuring several statistics from different simulations and compare
them against the input data (e.g., see Figures 7 and 9). These statis-
tics help in getting a macroscopic view of how GREIL behaves with
respect to data, such as fundamental diagrams of speed and flow
with respect to density, social interactions such as walking with
other agents (by measuring for example the distance to the closest
naighbour) or goal oriented behaviour (by measuring deviations
from a straight path to the goal). We note here that even though the
fundamental diagrams are more informative in very dense crowd
situations which we do not handle in this work, they were included
in the experimental evaluation for the sake of completeness since it
is a standard way of comparing macroscopically crowds in the liter-
ature[Bellomo and Dogbe 2011; Siebel and Mauser 2006]. Detailed
discussion on the results can be found in the following sections.
We additionally provide visualizations of simulations to get a more
qualititative view of the results.
The final crowd visualizations were done in the Unity Game

Engine; animated results can be seen in the supplemented video
and are a better indicator of the quality of the learned policies. It
is important to note that each agent acts independently and there
is no information in the state describing groups or the pose of a
character and therefore animations shown in the videos such as
talking, waving hands, etc. were added for aesthetic reasons.

5.1 Data / Learned Policies
We trained policies for several crowd datasets; in this work we
demonstrate results using datasets from [Charalambous et al. 2014;
Ju et al. 2010; Lerner et al. 2007] (see Fig. 6). Chat is a dataset of
8 agents moving around, stopping and talking to each other. The
Flocking datasets (Flock-1, Flock-2) consist of 16 and 24 agents
respectively and demonstrate crowds moving together in roughly
the same direction; i.e., they have similar desired velocities. Finally,
the pedestrian dataset is the more complex one since it has 148
people with mixed behaviors such as walking by themselves and/or
in small groups of 2-4 people entering and/or leaving groups, social
interactions, abnormal yet acceptable behaviors such as stopping
suddenly and changing directions, it mixes slow and fast walkers,
etc. Fig. 7 summarizes the fundamental diagrams of speed |v| and

density specific speed 𝐽 = |v| ∗ 𝑑 (i.e., flow) with respect to density
𝑑 [Siebel and Mauser 2006]. Speed is measured in a window of 1.0𝑠
whereas density is measured per agent in a radius of 3.6𝑚 which is
the social distance as defined in the proxemic model of Hall [1963].
Since these datasets are not very dense, flow has essentially a linear
relationship to density and pedestrians move mostly with constant
speed. We note that the Flock-2 and the Pedestrians datasets are
tracked from real-world ambient crowds in Cyprus whereas the
other datasets are captured in a controlled environment in South
Korea, which can partially explain the differences in absolute values
in speed and densities.
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Fig. 7. Properties of training datasets. Fundamental diagrams of pedestrian
dynamics for all the training datasets used in this paper.

Fig. 8 summarizes the learning curves for all datasets; they show
the average Q-Values for each minibatch being updated over time.
Shaded values show these values per update step whereas the thick
lines represent a moving average of 200 update steps. Recall that
the reward function returns values in the [0, 1] range; having 𝛾 = .9
and assuming we simulate for an infinite horizon, the expected
cumulative reward would be around 10 (from Equation 2). Since the
𝑘-LPE based reward function (Equation 5) maps rewards uniformly
in the [0, 1] range, the average reward per state is .5; therefore it
was expected that these curves would converge around 5.

Fig. 8. Training Curves. Training converges after a few thousand training
steps – the thick lines indicate a moving average of the Q-value function.
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In Fig. 10 we demonstrate the progression in learning for the
Flock-2 dataset. The demonstration simulation for this policy con-
sists of the 24 agents having the same start and end positions as
the source data. Initially, the agents learn quickly that the optimal
strategy is to move together but they do this without caring about
their targets; gradually they learn that the optimal strategy is to
move together towards their goals.

5.2 Simulations in similar conditions
Given the training trajectories, we define a set of scenarios based on
the original data as a starting point. Each agent has the same initial
and ending positions as a tracked person from the input; the desired
speed is set to the person’s trajectory average speed. As expected, all
agents successfully reach their goals following the learned policy; in
Fig. 11 we demonstrate the simulated trajectories against the input
trajectories of the pedestrian dataset. In the following paragraphs,
we demonstrate the same policy applied to different environments.

We additionally found that the fundamental diagrams are similar
to the input, however, there is some difference in the spectrum of val-
ues covered in our simulations with respect to the input data (Fig. 9).
For example, in the replication of the Flock-2 scenario (Fig. 9, top
row), we do not have densities over .13 𝑎𝑔𝑒𝑛𝑡𝑠/𝑚2. We do however
find that agents keep similar distances to their closest neighbors
and have low deviation from the intended path, indicating similar
behavior to the input(lefmost column). This behaviour is consistent
when using other datasets such as the Pedestrian one (Fig. 9, bottom
row). When trying to replicate the input data, we get a fundamental
diagram that is quite similar to the input. A more interesting obser-
vation in this experiment is that agents end up having low distances
to the nearest neighbours; this indicates grouping behaviour which
is a dominant behaviour in the input data. Additionally, we find that
agents have similar deviation from the desired path. We note once
again that in our fundamental diagrams we do not get bottleneck
situations; here, we would observe agents slowing down as density
around them increased. This is due to the fact that we do not have
very dense data and simulations in our experiments. We provide
these evaluations for completeness as they are a common practice
in the transportation and crowd simulation literature[Siebel and
Mauser 2006; Wolinski et al. 2014].

To demonstrate that we do not overfit, we also train a controller
using the 148 trajectories from the pedestrian dataset and then
initialize a simulation with 137 trajectories from a later stage of
the same dataset (ground truth). Snapshots of the ground truth can
be seen on the top row of Fig. 12; the bottom row demonstrates
snapshots of the simulation at the same exact points in time (please
consult the video). We notice that the simulation gives consistent
groups and individuals with collision avoidance and navigation
demonstrating that we can simulate crowds under similar conditions
to the input.

5.3 Sandbox Simulations
To demonstrate the emergent properties of the learned policies,
a sandbox toric-space scenario environment is initialized with 40
agents in a square region of 20𝑚 ∗ 20𝑚. Agents are initialized at
random positions and random desired velocities; when an agent

leaves from one side of the environment it appears on the oppo-
site side. As expected, using different policies resulted in different
behaviors. In the flocking dataset, agents flock and move together
after just a few seconds; with Flock-1 agents are closer and move
relatively slow whereas with Flock-2 they move faster and more
spread out (Fig. 13). Fig. 14 summarizes some statistics for all the
sandbox simulations. Macroscopically, it seems that the simulations
match the input data. However, getting into more depth, it seems
that the more data the better the capabilities of the policy to capture
the desired behaviours.
In the case of the Pedestrian policy, many behaviors emerge;

agents move with different flows, they split into multiple subgroups,
somemove alone, somemove slowly, some stop abruptly and change
directions and so forth. Importantly, these behaviors are persistent
(i.e., they last for long periods of time) resulting in more believable
behaviors (please consult the video). This is a key result since agents
act individually and none of them has a knowledge of the behavior
they should follow (besides the control policy); this is decided from
the initial conditions and the states that agents perceive over time.
That is, if it is for the benefit of an agent to stay with other agents
(i.e., larger future rewards), then it will stay with them for long
periods of time. The Chat scenario on the other hand, failed in this
scenario - agents simply started running around the scene without
stopping next to each other; the assumption here is that the scenario
is much more complex than the input data and a better training
strategy could be explored. There are somemethods from the Inverse
Reinforcement Learning literature that demonstrate how to learn
from a few expert trajectories that we plan to explore as future work
[Finn et al. 2016] to handle this issue.

5.4 Comparison to data-driven methods
We compare our method to the Perception Action Graph (PAG)
method which is a supervised learning based approach [Charalam-
bous and Chrysanthou 2014]. There is a fundamental problem with
supervised learning based approaches; they need large amounts of
data to generalize well. Even having large amounts of data, differ-
ences between simulation and training states are bound to exist.
Because of this, the actions returned by the learned models have
errors; in a sequential decision making setting, these errors ac-
cumulate over time. This gets worse in a multi-agent simulation
environment where the perception of any agent about the state
of the environment is affected by the erroneous actions of other
agents. Additionally, agents do not consider the future consequences
of their actions; actions are selected greedily. In GREIL on the other
hand, novel states are simulated and visited during training and are
evaluated by the future outcomes of simulations. These properties
of GREIL result in a robust data-driven crowd simulation system
that captures a variety of behaviors and generalize to more difficult
situations. To demonstrate these differences, we create two scenar-
ios; a long corridor (200𝑚 length) and a crossing scenario that has
double the agents as compared to the input data (296 agents).

PAG uses as state representation called Temporal Perception Pat-
terns (TPP). For our comparisons, we use a TPP with a field of view
𝜃 = 120◦ and a temporal window of 1𝑠 . We also used a threshold
of .95 for the construction of the graph (please refer to the work
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Fig. 9. Simulation statistics. We quantitatively evaluate different simulations against real world data that were used to train GREIL policies. These include the
fundamental diagram of density specific speed, distance to the nearest neighbor, and deviation from the goal. The leftmost columns in the box plots represent
the reference data, whereas the other plots represent simulations ran by trained policies that used the reference data.

Fig. 10. Training Progress. The learned policy for the Flock-2 dataset over
time. Initially the agents learn quickly to group and move together but fail
to reach their goals; over time they learn to move towards their goals.

by Charalambous and Chrysanthou [Charalambous and Chrysan-
thou 2014] for technical details). In the long corridor (Fig. 15), PAG
introduces errors over time whereas in the crossing scenario er-
rors are accumulated both spatially and temporally (Fig. 16); notice
the chaotic nature of the PAG trajectories. GREIL agents on the
other hand move efficiently and in groups towards their targets.
Even though both methods capture macroscopic behaviour such
as the relationship of speed to density quite well (Fig. 17), GREIL
demonstrates better generalization and stability performance w.r.t.
deviation from intended paths in complex situations.

(a) Input Data (b) Simulation

Fig. 11. Replicating the input. (a) Data used to learn a policy. (b) A simulation
of the original agent configuration using the learned policy.

5.5 Comparison to a baseline RL method
We also compare against a variation of a state-of-the-art representa-
tive reinforcement learning system for collision avoidance in the
robotics domain[Long et al. 2018]; the main change being that we
use our own state representation. We note that we opted not to
compare against the recent Configurable Crowd Profiles approach
[Panayiotou et al. 2022]; this would only make sense if this method
was tuned to real-world data. However, this is not an easy task. CCP
mixes four specific behaviors; to have a fair comparison we would
need to find optimal parameters for each agent. These parameters
would probably need to change over time. By itself this is a very
challenging problem. If we leave standard parameters, this would
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(a) Ground Truth

(b) GREIL

Fig. 12. Comparison to ground truth. (top) Actual crowd data against (bottom)
simulation with GREIL. Colors indicate the current velocity of agents. GREIL
manages to simulate similar behavior without overfitting to the data.

(a) Flock-1 (b) Flock-2 (c) Pedestrians

Fig. 13. Sandbox Simulations. Agents adapt to the learned policies after a
few seconds (colors indicate current velocities). In (a) and (b) all agents move
together with different speeds and densities. In (c) on the other hand we
get a multitude of behaviors; groups, individuals, slow/fast walkers, etc.

be similar to [Long et al. 2018] with a slightly different constant
reward function.

The reward function is defined as 𝑟 = 𝑟𝑐 +𝑟𝑔 ; 𝑟𝑐 is the punishment
for collision and 𝑟𝑔 is the reward for moving towards the goal. We set
a sparse reward 𝑟𝑐 = −1, 𝑟𝑔 = 1 when the agent collides or reaches
a goal and a dense reward signal 𝑟𝑔 = 2.5( | |p𝑡−1 − g| | − | |p𝑡 − g| |)
at any other given moment; p𝑡 and g are the agent’s position at
time 𝑡 and goal position respectively. 𝑟𝑔 motivates the agent to
move continuously towards the goal. The training curve for these
parameters can be seen in Fig. 18.
This approach, being RL based, manages to navigate the agents

more efficiently than PAG and, at the trajectory level at least, very
similar to GREIL (Fig. 16). Examining the simulations though, we can
see that the generated behaviors are quire different. Because of the
simple nature of the reward function, agents move as fast as possible
towards their targets whilst avoiding collisions; no other interaction
is handled. There are no groups, wandering agents or other emergent
behavior; defining a manual reward function to capture these would
not be an easy task. GREIL on the other hand navigates agents
towards their targets whilst respecting the input data behaviors.
Please consult the video for the animated comparisons.
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Fig. 14. (top) The fundamental diagrams of the sandbox scenarios indi-
cate that macroscopically, the simulations match the input data. However,
(middle, bottom) the sandbox simulations with the flocking data do not
match the full spectrum of the input data, whereas the simulations with
the pedestrian dataset have a better coverage.

(a) PAG

(b) GREIL

Fig. 15. Supervised learning methods such as PAG [Charalambous and
Chrysanthou 2014] can result in non consistent simulations because of the
accumulation of errors over time and over multiple agents’ actions.

5.6 Generalization Simulations
To demonstrate the applicability of the learned policies on differ-
ent scenarios, we simulated different environments with the same
policies. In Fig. 19, we demonstrate resulting trajectories from the
application of the Pedestrian policy in 5 different scenarios. Dots
indicate agent goals, red lines indicate agents who reached their
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(a) GREIL (b) PAG (c) Long et al. 2017

Fig. 16. GREIL can handle situations that were different from the training
data; this simulation has double the agent density of the source data. The
agents are colored based on current moving direction. Supervised learn-
ing approaches (PAG) have difficulties to generalize to unseen situations,
whereas RL methods produce similar trajectories but do not capture aspects
of the data such as groups (notice the dynamically formed clusters of similar
colored agents in the left figure).
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Fig. 17. Quantitative comparison of a supervised learning method
(PAG[Charalambous and Chrysanthou 2014]) against GREIL. Macroscop-
ically, both methods are quite similar, however PAG struggles in difficult
scenarios (e.g., Crossing) due to error accumulation.

goals and blue those who failed to do so before leaving the bounding
box of the simulation environment. These simulations manage to
capture both common and uncommon behaviors that are present
in the data (Fig. 20); social groups that stay together, individuals,
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Fig. 18. Convergence of our baseline implementation of Long et al.[2018].

wandering agents (which reach their goal after some time), agents
joining and/or leaving groups, etc. Please refer to the accompanied
video to see animated results of the simulations.

Additionally, Fig. 21 shows the sequence of actions that two of
the agents took during the simulation when using this policy; it is
clear that each agent applied only a handful of actions for prolonged
periods of time. This indicates consistency in decision-making and
behavior and that different subsets of agents use different (small)
subsets of the action space indicating heterogeneity in behavior;
heterogeneity is implicitly influenced by the initial conditions of
the agents (e.g., goals, position, preferred speed).

6 DISCUSSION/FUTURE DIRECTIONS
In this paper, we leverage fairly recent advances in Deep RL, namely
the Double Deep Q-learning algorithm [van Hasselt et al. 2016],
to find policies for crowd agents. We use a novel reward function
structure that is based on Novelty Detection and more specifically
𝑘-LPE; this function gives a reward to a state that is essentially
proportional to the probability it came from the distribution of input
states. We demonstrate results from trained controllers that manage
to capture and simulate both common behaviors such as social
groups, individuals and collision avoidance and rare cases such
as sudden stops and changes in direction, joining/leaving groups,
etc. Moreover, the agent behavior is more persistent than previous
data-driven methods.

Learning Strategy. While we effectively managed to create agents
that display a wide variety of behaviors, there are situations where
the policies are not robust, such as, when small amount of data is
available. It is possible, however, to combine other improvements to
increase the performance as well as the robustness of our approach
[Hessel et al. 2018]. For example, using a prioritized experience
replay memory, instead of uniformly sampling from it [Schaul et al.
2015], a dueling architecture that better generalizes across actions
[Wang et al. 2016], multi-step learning [Sutton and Barto 2018], or
learning a distribution of returns instead of the expected return
[Bellemare et al. 2017].

Continuous Actions. The training algorithm that we employ re-
quires the actions to be discrete. An alternative approach would be
to use continuous actions. In such cases, actor-critic (e.g., see [Mnih
et al. 2016]) or policy search methods (e.g., see [Levine and Koltun
2013]) could be an alternative. In addition, multimodal behaviors
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Fig. 19. Different simulations under the same policy (Pedestrians). The dots indicate goal positions; red trajectories indicate agents who reached their goals
and blue those who reached the boundaries of the environment before reaching their goals.

(a) Social Groups (b) Flocks (c) Individuals (d) Mixed behaviors

(e) Sudden Stops (f) Joining Groups (g) Leaving Groups (h) Unexpected behavior

Fig. 20. Results from the same simulation - all agents use the pedestrian controller. The policy is able to capture and simulate simultaneously (a-d) social
groups, flocks, individuals, mixed behaviours; (e-f) and various behaviors such as agents suddenly standing still, joining/leaving groups, etc. Please watch to
the supplemented video for the animated results.

could be captured by considering a soft Bellman equation [Haarnoja
et al. 2017].

Reward Function. We designed an intuitive reward function that
aims at guiding agents in places of the state space real people prefer.
Our method is based on novelty detection; since this is a nearest
neighbor based approach, it has some limitations such as search
speed especially in higher dimensions. Additionally, these methods
do not scalewell with large amounts of data. An alternative approach
we would like to explore, is to learn the underlying reward function

concurrently to the policy learning procedure. This is the subject
of Inverse Reinforcement Learning methods [Abbeel and Ng 2004;
Finn et al. 2016; Wulfmeier et al. 2015; Ziebart et al. 2008]. We are
interested to see how our approach compares to these and also
explore methods proposed by these approaches to learn from a
limited set of expert trajectories (for example in [Finn et al. 2016]).

Heterogeneous Crowds. In this work, we learn a policy for all the
agents in a given dataset. This allows to learn for example crowd
behaviors in a train station or a street during rush hour or at night.
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Fig. 21. Actions Sequences.

If we want to learn finer details of individualized behavior (e.g.,
children, athletic, social, etc.), we need to be able and identify input
trajectories that represent similar behaviors and learn “profile” based
policies. Some recent work that could help us reach this goal has
shown that it is possible to control simulated behavior by adding
a set of control signals in the input of a single policy [Panayiotou
et al. 2022].

RL to control macroscopic features of the crowd. We did not discuss
how and when to initialize agents in a given environment; a simple
way to approach this is to initialize agents around the borders of
the simulation environment at certain intervals and give them some
goals. We argue, that a more clever and robust way is to develop
a controller (i.e., an agent) that observes the state of the entire
simulation and acts accordingly by spawning agents with specific
agendas. The state can consist for example of macroscopic patterns
such as densities, flows etc. We are interested in developing these
kinds of controllers and Reinforcement Learning seems to be a very
promising approach to do so.

Applications to other domains. Our method is applied on ambient
crowds for game or movie scenarios; in these scenarios we care
mostly for the appearance of realistic crowds. A large body of work
in the crowd simulation community also considers applications such
as evacuations or autonomous driving. Given appropriate data, we
would like to explore the applicability of our method to these cases;
we believe that with specific modifications to the state and actions
spaces, our method could potentially work.
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